QUENCHING BEHAVIOR FOR DEGENERATE PARABOLIC PROBLEMS

P. C. Kong

Department of Mathematics Carson-Newman College, Jefferson City, TN 37760

Abstract. This article studies the degenerate parabolic differential equation, $u_{xx}-x^qu_t=-f\left(u\right)$, where q is any real number and $f\in C^2\left[0,c\right)$ for some constant c such that $f\left(0\right)>0$, f'>0, $f''\geq0$ and $\lim_{u\to c^-}f\left(u\right)=\infty$. With nonnegative initial data and zero boundary condition, location of quenching and conditions for single-point quenching are discussed. An upper bound for quenching time for single-point quenching is also established.

AMS (MOS) subject classification: 35K65, 35K20, 35K55, 35K60

1. Introduction

Let $T \leq \infty$, a > 0, $\Omega = (0, a) \times (0, T)$, $\partial \Omega$ be the parabolic boundary $([0, a] \times \{0\}) \cup (\{0, a\} \times (0, T))$ of Ω , and

$$Lu \equiv u_{xx} - x^q u_t$$

where q is any real number. When $q \neq 0$, the differential operator is said to be degenerate. Floater [5] studied the degenerate parabolic equation $Lu = -u^p$ in Ω , for p>1 and a=1, subject to certain nonnegative initial data and zero boundary conditions. He showed existence of a unique classical solution and proved that for $p \leq q+1$, the solution blows up at x=0 in finite time. The case p>q+1 was studied by Chan and Liu [4]. In particular, they established that the blow-up set is a proper compact subset of (0,a), and that if the initial data are sufficiently small, the global soluton is uniformly bounded above. Recently, Chan and Kong [1, 3] studied the degenerate quenching problem,

$$Lu = -f(u)$$
 in Ω , $u = 0$ on $\partial\Omega$ (1)

for $q \neq 0$ with $f \in C^2([0,c))$ for some positive constant c such that f(0) > 0, f' > 0, $f'' \geq 0$ and $\lim_{u \to c^-} f(u) = \infty$. By quenching phenomena, we mean the blow-up of u_t in finite time T (called the quenching time) and existence of a unique critical length a^* (which is the length such that for $a < a^*$, u exists for all t > 0, and for $a > a^*$, u reaches c somewhere in finite time and u_t blows up there). When $u_t > 0$, a necessary condition for quenching to occur is

$$\max \{u(x,t): 0 \le x \le a\} \to c^- \text{ as } t \to T^-.$$