DIRECTIONAL CONTROL OF THE MOTION OF A ROLLING DISK BY USING AN OVERHEAD ROTOR

Y. Yavin

Laboratory for Decision and Control
Department of Electrical and Electronic Engineering
University of Pretoria, Pretoria, South Africa.

Abstract. This work deals with the guidance and control of a system which is composed of a disk rolling on the horizontal (X,Y)-plane, a controlled slender rod that is pivoted through its center of mass about the disk's center, and a rotor with its axis fixed in the upper end of the rod (see Fig. 1). The rod is controlled in such a manner that it is always aligned along the line passing through the points ${\bf O}$ and ${\bf C}$,where ${\bf O}$ denotes the center of the disk and ${\bf C}$ denotes the point of contact between the plane and the disk. The rotor rotates in a plane ${\mathcal T}$ that is always perpendicular to the rod. Furtheremore, when the plane of the disk is vertical to the (X,Y)-plane, then, ${\mathcal T}$ is parallel to the (X,Y)-plane. Given N points P_i , i=0,...,N-1 in the horizontal plane, N real numbers ϕ_{if} , i=0,...,N-1, a finite time interval $[0,t_f]$, and a sequence of times $\tau_0=0<\tau_1<...<\tau_{N-1}=t_f$. Denote by ϕ the direction of the disk. Based on a dynamical model of the system, and by using the concept of path controllability, control laws are derived for the disk's directional, inclination and pedalling moments such that $[{\bf O},\phi]$ will pass through $[P_j,\phi_{jf}]$ at the time τ_i , j=0,...,N-1, respectively.

Key Words: Rolling disk, controlled pivoted slender rod, overhead rotor, directional control, nonholonomic constraints, path controllability.

1 Introduction

This work deals with the guidance and control of a system which is composed of a disk rolling on the horizontal (X,Y)-plane, a controlled slender rod that is pivoted through its center of mass about the disk's center, and a rotor with its axis fixed in the upper end of the rod (see Fig. 1). The rod is controlled in such a manner that it is always aligned along the line passing through the points $\mathbf O$ and $\mathbf C$, where $\mathbf O$ denotes the center of the disk and $\mathbf C$ denotes the point of contact between the (X,Y)-plane and the disk. The rotor rotates in a plane $\mathcal T$ that is always perpendicular to the rod. Furtheremore, when the plane of the disk is vertical to the (X,Y)-plane, then, $\mathcal T$ is parallel to the (X,Y)-plane.

In this work, first it is shown that the torque to the above-mentioned overhead rotor induces a directional moment to the disk's motion. Also, it is assumed here that two other moments, that is, a tilting moment and a pedalling moment are actuating the motion of the disk. Second, the following