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Abstract. In this paper, we show that mixed convexity-concavity properties of f result

in similar convexity-concavity properties of the solutions.

1 Introduction

Interesting results on the convex dependence of solutions of differential equa-
tions relative to the initial data were recently obtained. First, Sarychev [5]
showed that the solutions z(t; tg, zg) of the IVP, 2’ = f(¢t, z), z(to) = =0, are
convex relative to xg if f is convex in x, uniformly in ¢. Then, a simplified
proof of this result, as well as its extension to IVP’s in a Banach space, were
given by Lakshmikantham et al. [3, 6] and in a very recent paper [2], it was
shown that under the same conditions on f, convexity of the solution relative
to o also holds, thereby establishing the fact that convexity of f relative to
x implies the convexity of the solutions relative to the initial data (tg, o).
In this paper, we show that mixed convexity-concavity properties of f result
in similar convexity-concavity properties of the solutions.

2 Preliminaries

Let f: L — R be a real-valued function defined on an arbitrary normed linear
space L, and let U = B(0,b) be a convex subset of L. Then, for z1,25 € U,
5 €(0,1), sz1+ (1 —s)zg € U and || z ||< b for any x € U. First we state
the following definitions and theorems on convexity for future reference. For
more details, see [4].

Definition 2.1: f: L — R is convex on U C L if

flszy + (1= $)z2) < /(1) + (1 — 8)f(23) (2.1)

where 21,20 € U, s € (0,1). If (—f): L — R is convex on U, then f is
said to be concave on U.

On an infinite-dimensional space, it is generally not the case that a convex
function is continuous. However, a convex function defined on an open
convex subset U of R™ is continuous. This is stated in the following theorem.



