Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002) 29-34 Copyright ©2002 Watam Press

MIXED CONVEXITY - CONCAVITY PROPERTIES OF SOLUTIONS OF DIFFERENTIAL EQUATIONS RELATIVE TO INITIAL VALUES

Zahia Drici

Illinois Wesleyan University Department of Mathematics Bloomington, IL 61702

Abstract. In this paper, we show that mixed convexity-concavity properties of f result in similar convexity-concavity properties of the solutions.

1 Introduction

Interesting results on the convex dependence of solutions of differential equations relative to the initial data were recently obtained. First, Sarychev [5] showed that the solutions $x(t; t_0, x_0)$ of the IVP, x' = f(t, x), $x(t_0) = x_0$, are convex relative to x_0 if f is convex in x, uniformly in t. Then, a simplified proof of this result, as well as its extension to IVP's in a Banach space, were given by Lakshmikantham et al. [3, 6] and in a very recent paper [2], it was shown that under the same conditions on f, convexity of the solution relative to t_0 also holds, thereby establishing the fact that convexity of f relative to x implies the convexity of the solutions relative to the initial data (t_0, x_0) . In this paper, we show that mixed convexity-concavity properties of f result in similar convexity-concavity properties of the solutions.

2 Preliminaries

Let $f: L \to \mathbb{R}$ be a real-valued function defined on an arbitrary normed linear space L, and let U = B(0, b) be a convex subset of L. Then, for $x_1, x_2 \in U$, $\delta \in (0, 1), sx_1 + (1 - s)x_2 \in U$ and || x || < b for any $x \in U$. First we state the following definitions and theorems on convexity for future reference. For more details, see [4].

Definition 2.1: $f: L \to \mathbb{R}$ is convex on $U \subseteq L$ if

$$f(sx_1 + (1 - s)x_2) \le sf(x_1) + (1 - s)f(x_2)$$
(2.1)

where $x_1, x_2 \in U, s \in (0, 1)$. If $(-f): L \to \mathbb{R}$ is convex on U, then f is said to be concave on U.

On an infinite-dimensional space, it is generally not the case that a convex function is continuous. However, a convex function defined on an open convex subset U of \mathbb{R}^n is continuous. This is stated in the following theorem.