Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002) 79-88 Copyright ©2002 Watam Press

ON AN APPLICATION OF THE SADDLE-POINT THEOREM

Chen Chang

Division of Mathematics and Statistics The University of Texas at San Antonio San Antonio, TX 78249

Abstract. We prove the existence of minimax type solution for equation $\Delta u + g(x, u) = h(x)$. We give conditions on both the nonlinearity and its potential.

AMS (MOS) subject classification: 1991 subject classification: 35J65.

1 Introduction and Summary

In this paper we apply Rabinowitz's Saddle-Point Theorem [14], to a semilinear boundary value problem. We improve the results of a previous paper [16] published in September 98 issue of *Dynamic Systems and Applications*. Here we consider the elliptic boundary value problem

$$\begin{cases} \Delta u + g(x, u) = h(x) \\ u | \partial \Omega = 0 \end{cases}$$
(1)

(2)

where $\Omega \subset \mathbb{R}^N$, $N \geq 1$, is a bounded connected open set, and $h \in L^2(\Omega)$. As in [16], we leave aside questions of regularity and look for $H_0^1(\Omega)$ -weak solutions of (1) and (2). Our main result is the following theorem.

Theorem Let λ_k, λ_{k+1} be the k^{th} and $(k+1)^{\text{th}}$ eigenvalues of the problem $\Delta u + \lambda u = 0, u | \partial \Omega = 0$ respectively. Let $h \in L^2(\Omega)$ and g be continuous on $\Omega \times \mathbb{R}$. Let $G : \Omega \times \mathbb{R} \to \mathbb{R}$ be defined by

$$G(x,\xi)=\int_0^\xi g(x,s)ds$$

Assume $\lambda_k < \lambda_{k+1}$ and