Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002) 397-416 Copyright ©2002 Watam Press

PERIODIC SOLUTIONS OF SECOND ORDER BOUNDARY VALUE PROBLEMS WITH IMPULSES

Xiyu Liu and Hong Liu

School of Information and Mangement Shandong Normal University Jinan, Shandong 250014 People's Republic of China

Abstract. This paper deals with periodic solutions of impulsive second order boundary value problems with parameter. Existence results are presented for nonlinearity with mixed sublinear and superlinear term at $\lambda = 0$ and (or) $\lambda \neq 0$. Continua of the solution set are obtained. The main technique is fixed point argument of expansion and compression type. **Keywords.** impulsive, boundary value problems, periodic solutions, fixed point. **AMS (MOS) subject classification:** 34A37; 34C25

1 Introduction and the Main Results

Let M > 0 be a constant, J = [0, T], and $p \in C^1[0, T]$, $p(t) > 0, t \in (0, T)$. Consider the following periodic boundary value problem with impulses at fixed moments

$$\begin{cases} -Lx + \frac{M^2}{p^2(t)} = f_{\lambda}(t, x(t)), & t \in J' = J \setminus \{t_1, t_2, \cdots, t_n\} \\ -\Delta(px')|_{t_k} = L_k(x(t_k)), & k = 1, 2, \cdots, n \\ \Delta x|_{t_k} = \hat{L}_k(x(t_k)), & k = 1, 2, \cdots, n \\ x(0) - x(T) = x_0, & -(px'|_0 - px'|_T) = x_1, \end{cases}$$
(1.1)

where $(Lx)(t) = \frac{1}{p(t)}(p(t)x'(t))'$, λ is a parameter and $f_{\lambda}(t,s) = f(\lambda,t,x)$. For impulsive periodic boundary value problems, Wei [7] introduces the notion of Green's function, and obtain maximal and minimal solutions in the case of $p(t) \equiv 1$ provided a pair of upper and lower solutions exist. In a recent paper, Cabada, A., Nieto, J.J., Franco, D. and Trofinchuk, S.I. in [1] study problem (1.1) in the case when f is a Carathéodory function. By some technique based on the Banach contraction principle the authors develop a monotone iterative technique. They also get existence results if there exist upper and lower solutions.

In the present paper, we will study problem (1.1) in a different approach. We do not assume the pre-existence of upper and lower solutions. Instead,

 $^{^1{\}rm This}$ work is supported in part by Young Scientist Award Project of Shandong Pronvince and NSFC of China under grant No. 69975010.