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Abstract. We introduce a dynamic economic lot sizing problem which takes into account

both the production setup cost and the designed-and-yet stretchable production capacity.

Demands and the control on production activities drive the evolution of the production

system. We give a pseudo-polynomial algorithm for the problem when future demands are

known. When there is uncertainty in future demands and there is no holding of inventory,

we propose a two-layered solution process which makes the demand acceptance decision

first and decides the level of production next. We also construct a mixed model which

combines the features of both deterministic and stochastic models. The model not only

utilizes currently-known information but also anticipates for the future. Our simulation

study demonstrates the advantage of the mixed model.
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1 Introduction

The dynamic economic lot sizing (DELS) problem aims at the optimal dy-
namic control of production activities in a certain time horizon for a produc-
tion system which faces exogenous demands. Here, we study a single-item
DELS problem where the production cost is neither concave nor convex. To
produce a certain quantity of items in one period, a setup cost S is incurred
and the unit production cost depends on whether or not the quantity has ex-
ceeded the “soft” capacity X of the production system. The unit cost is FL

when the capacity is not exceeded and FH when it is, where FL < FH . The
soft capacity X reflects that the system has a designed production capacity
and yet it is not unsurpassable with extra efforts being taken. Also, there is
a we holding cost with rate E and a linear backlogging cost with rate L.

Most widely-studied DELS problems consider cases where production cost
is either concave or convex. Wagner and Whitin [19] gave an O(T 2) solu-
tion to a restricted version of the concave-cost DELS problem. Veinott [16],
Zabel [20], Eppen, Gould, and Pashigian [7], Zangwill [21], Blackburn and
Kunreuther [5], Lundin and Mortin [11], and Morton [13] all made gener-
alizations to the O(T 2) result. Federgruen and Tzur [8], Wagelmans, van


