STABILITY RESULTS FOR THE ISHIKAWA ITERATION PROCEDURES

H. Y. Zhou¹, S. S. Chang², R. P. Agarwal³ and Y. J. Cho⁴

¹Department of Mathematics
Shijiazhuang Mechanical Engineering College
Shijiazhuang 050003, P. R. China
²Department of Mathematics
Sichuan University
Chengdu, Sichuan 610064, P. R. China
³Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, FL 32901-6975, U.S.A.

⁴Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea

Abstract. Let X be a real uniformly smooth Banach space, K be a nonempty closed convex subset of X and $T:K\to K$ be a generalized Lipschitzian and hemicontractive mapping. It is shown that the Ishikawa iteration procedures are weakly T-stable. As consequences, several weak stability results are established.

Keywords. Hemicontraction, generalized Lipschitz condition, the Ishikawa iteration procedure, weakly T-stable.

AMS (MOS) subject classification: Primary 47H17; Secondary 47H05, 47H10.

1 Introduction

Let X be a real Banach space with norm $\|\cdot\|$ and X^* be the dual space of X. The normalized duality mapping $J:X\to 2^{X^*}$ is defined by

$$J(x) = \{x^* \in X^* : \langle x, x^* \rangle = ||x||^2 = ||x^*||^2\},\$$

where $\langle \cdot, \cdot \rangle$ denotes the generalized duality pairing. It is well known that, if X is uniformly smooth, then J is single-valued, J(tx) = tJx for all t > 0 and $x \in X$, and J is uniformly continuous on bounded subsets of X ([1], [2]). We denote the single-valued normalized duality mapping by j.

An operator T with domain D(T) and range R(T) in X is said to be generalized Lipschitzian if there exists a constant c > 0 such that

$$||Tx - Ty|| \le c(1 + ||x - y||)$$

⁴The corresponding author: Yeol Je Cho.

⁴The fourth author wishes to acknowledge the financial support of the Korea Research Foundation Grant (KRF-99-005-D00003).