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Abstract. In this paper, we study exponential stability of the steady state of a reaction
diffusion Hopfield neural network by the method of upper and lower solutions. The study is
done under the condition that the reaction term is quasi-monotone increasing. We further
describe the domain of attraction and discuss certain points concerning the proof of the
stability of the steady state for both quasi-monotonically decreasing and mixed reaction
terms.
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1 Introduction

Recently, there has been considerable interest in the qualitative analysis of
Hopfield neural networks [1, 2, 3,4, 5, 6, 9, 10, 11, 15, 19, 22, 24], which can be
described by nonlinear differential equations [6, 22]. Hopfield neural network
model is very crucial for its various applications, such as associative memories
and optimization. In [1, 2, 3, 4, 5, 9, 10, 11, 15, 19, 24], many sufficient
conditions for the stability of hopfield neural network are given; however,
this is considered over the change in time direction only. Strictly speaking,
when electrons are moving in a non-uniform electromagnetic field, diffusion
is inevitable. It is more common to study the neural network with reaction
and diffusion, especially in chemistry as described in [16, 17, 18, 20]. This
particular type of network is also studied in [1, 3, 7, 9, 12, 13, 14, 26, 27, 28].
In [9], the model of reaction diffusion hopfield neural network is given by
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where C; is the capacitance, R; is the resistance, I; is the current, u; is the
voltage, g; is the output function, D; is the diffusion function, T' = (T3 )nxn
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