Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 9 (2002) 511-522 Copyright ©2002 Watam Press

GLOBAL SOLUTIONS OF INITIAL VALUE PROBLEMS FOR SECOND ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SPACES

Lishan Liu¹, Fei Guo¹ and Jong Kyu Kim²

¹ Department of Mathematics Qufu Normal University, Qufu, Shandong 273165, China ² Department of Mathematics,

Kyungnam University, Masan, Kyungnam 631-701, Korea

Abstract. In this paper, by use of Schauder's fixed point theorem, the existence of global solutions of initial value problem for second order integro-differential equation in a Banach space is investigated. As applications of the main theorem, the existence of global solutions of two classes of fourth order mixed boundary value problem are obtained.

Keywords. Measure of non-compactness, initial value problem, Schauder's fixed point theorem.

AMS (MOS) subject classification: 45J05, 34K30.

1 Introduction

Let $(E, \|\cdot\|)$ be a real Banach space, $J = [0, a], a > 0, x_0, x_1 \in E$. Now, we consider the following initial value problem (IVP) for nonlinear second order integro-differential equations of mixed type in E.

$$\begin{cases} x'' = f(t, x, x', Tx, Sx), & t \in J, \\ x(0) = x_0, & x'(0) = x_1, \end{cases}$$
(1.1)

where $f \in C[J \times E \times E \times E \times E, E]$, the linear integral operator T and S are defined by

$$(Tx)(t) = \int_0^t k(t,s)x(s)ds, \quad (Sx)(t) = \int_0^a h(t,s)x(s)ds, \quad t \in J, \quad (1.2)$$

where $k \in C[D, R^1]$, $h \in C[J \times J, R^1]$, $D = \{(t, s) \in J \times J : s \le t\}$, $R^1 = (-\infty, +\infty)$.

In the special case where f does not contain x' (see, (1.3)), the existence of maximal and minimal solutions of the following initial value problem for nonlinear second order integro-differential equation of mixed type in a Banach