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Abstract. Positive solutions are established for the singular integral equation y(t) =∫ 1

0
k(t, s) [g(y(s)) + h(y(s))] ds, t ∈ [0, 1]. Our nonlinearity may be singular at y = 0 and

our theory includes a problem which arises in the boundary layer theory in fluid mechanics.
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1. Introduction.

In the axisymmetric stagnation flow (i.e. Homann flow) the Navier–Stokes
equation can be reduced to the third order Falkner–Skan equation (for f(η))

(1.1) f ′′′ + f f ′′ +
1
2

(1− (f ′)2) = 0, 0 < η < ∞

with boundary conditions

(1.2) f(0) = 0, f ′(0) = 0 and f ′(∞) = 1.

Assume f(η) is a solution of (1.1), (1.2) and f ′′(η) > 0 for all η ≥ 0. Then
η = g(t), the inverse function to t = f ′(η), exists and is strictly increasing
on (0, 1) with g(0) = 0 and

t = f ′(g(t)) for all t ∈ (0, 1).

Differentiate with respect to t to obtain

w(t) ≡ f ′′(g(t)) =
1

g′(t)
, 0 < t < 1.

For simplicity a prime will denote differentiation with respect to t or η.
Substitute η = g(t) into (1.1), and use w′(t) = f ′′′(g(t)) g′(t) = f ′′′(g(t))

w(t) , to
obtain

(1.3) w′(t)w(t) + f(g(t))w(t) +
1
2

(1− t2) = 0, 0 < t < 1.

Divide by w and differentiate with respect to t to obtain

w′′(t) =
t w(t) + 1

2 (1− t2)w′(t)
w2(t)

− t

w(t)
=

(1− t2)w′(t)
2 w2(t)

, 0 < t < 1.


