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Abstract. This paper treats two typical optimal control problems for a nonlinearly

viscoelastic rod moving in space. In each problem the rod is required to reach a prescribed

target consisting of a certain set of positions and velocities. In one case the time is to be

minimized and in the other a quadratic cost functional is to be minimized. The admissible

controls lie in a bounded set of forces and couples applied to one end of the rod. The

governing equations form a quasilinear parabolic-hyperbolic system. The existence of

optimal controls depends on suitable compactness results obtained here.
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1 Introduction

We consider a model [1] of a nonlinearly viscoelastic rod moving in 3-dimen-
sional space, taking into account not only longitudinal and transverse mo-
tions, but also shear and torsional motion: One may visualize this, dis-
cretized, as a chain of hard vertebrae connected by a viscous springy ma-
terial. This paper is related to the forthcoming [3] much as [9] was related to
[2]. The papers [2] and [9] treat the purely longitudinal motion of a straight
rod. As in [9], we show that the attainment of optimality for certain control
problems is intimately related to the considerations involved in showing the
existence of solutions, in particular, to the requirement that a subsequential
limit of solutions to some approximating problems should be solutions of a
desired limit problem.

For the model we consider, the geometric state at each point of the refer-
ence configuration (which we take to be parametrized by s ∈ [0, 1]) consists
of the position r = r(t, s) in 3-dimensional space and the orientation of the


