Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 (2003) 679-691 Copyright ©2003 Watam Press

OPTIMAL CONTROL OF THE SPATIAL MOTION OF A VISCOELASTIC ROD

This paper is dedicated to John Cannon on the occasion of his 60th birthday

Thomas I. Seidman¹ and Stuart S. Antman²

¹Department of Mathematics and Statistics University of Maryland Baltimore County, Baltimore, MD 21250, ²Department of Mathematics, Institute for Physical Science and Technology, and Institute for Systems Research University of Maryland College Park, College Park, MD 20742

Abstract. This paper treats two typical optimal control problems for a nonlinearly viscoelastic rod moving in space. In each problem the rod is required to reach a prescribed target consisting of a certain set of positions and velocities. In one case the time is to be minimized and in the other a quadratic cost functional is to be minimized. The admissible controls lie in a bounded set of forces and couples applied to one end of the rod. The governing equations form a quasilinear parabolic-hyperbolic system. The existence of optimal controls depends on suitable compactness results obtained here.

Keywords. Nonlinearly viscoelastic rod, optimal control, quasilinear parabolic-hyperbolic system, well-posedness.

AMS (MOS) subject classification: 35K70, 49J20, 74D10, 74H99, 74K10

1 Introduction

We consider a model [1] of a nonlinearly viscoelastic rod moving in 3-dimensional space, taking into account not only longitudinal and transverse motions, but also shear and torsional motion: One may visualize this, discretized, as a chain of hard vertebrae connected by a viscous springy material. This paper is related to the forthcoming [3] much as [9] was related to [2]. The papers [2] and [9] treat the purely longitudinal motion of a straight rod. As in [9], we show that the attainment of optimality for certain control problems is intimately related to the considerations involved in showing the existence of solutions, in particular, to the requirement that a subsequential limit of solutions to some approximating problems should be solutions of a desired limit problem.

For the model we consider, the geometric state at each point of the reference configuration (which we take to be parametrized by $s \in [0, 1]$) consists of the position $\mathbf{r} = \mathbf{r}(t, s)$ in 3-dimensional space and the orientation of the