MASS QUANTIZATION OF THE NON-EQUILIBRIUM MEAN FIELD TO SELF-INTERACTING PARTICLES

Takashi Suzuki¹

¹Department of Mathematical Science Graduate School of Engineering Science Osaka University, Toyonakashi, 560-8531, Japan

Abstract. Blowup mechanism of a parabolic-elliptic system of cross-diffusion is studied. This system describes the mean field of self-interacting particles, and the blowup solution develops a finite number of singularities like the delta function. Here, it is shown that each re-scaled collapse has the quantized mass. The possibilities of the existence of the remainder term and the formation of multi-collapses of the pre-scaled collapse are also discussed.

Keywords. Chemotaxis, Free Energy, Blowup, Elliptic-Parabolic System, Self-interacting Particles.

AMS (MOS) subject classification: 35K55, 35K57, 92C15, 92D15.

1 Introduction

This paper is concerned with the elliptic-parabolic system of cross-diffusion,

$$\begin{aligned} u_t &= \nabla \cdot (\nabla u - u \nabla v) \\ 0 &= \Delta v - av + u \end{aligned} \right\} & \text{in} \quad \Omega \times (0, T) \\ \frac{\partial u}{\partial \nu} &= \frac{\partial v}{\partial \nu} = 0 \quad \text{on} \quad \partial \Omega \times (0, T) \\ u|_{t=0} &= u_0(x) \quad \text{in} \quad \Omega, \end{aligned}$$
 (1)

where $\Omega \subset \mathbf{R}^n$ is a bounded domain with smooth boundary $\partial\Omega$, a > 0 is a constant, and ν is the outer unit normal vector on $\partial\Omega$.

In the context of mathematical biology, it is proposed by Nagai [18] as a simplified form of the ones given by Jäger and Luckhaus [15], Nanjundiah [23], Keller and Segel [16], and Patlak [26]. Here, u=u(x,t) and v=v(x,t) stand for the density of cellular slime molds and the concentration of chemical substances secreted by themselves, respectively, at the position $x \in \Omega$ and the time t>0.

In this case, the first equation describes the conservation of mass, where the flux of u is given by $\mathcal{F} = -\nabla u + u\nabla v$, as

$$\frac{d}{dt} \int_{\Omega} u = -\int_{\partial \Omega} \mathcal{F} \cdot \nu$$