Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 10 (2003) 709-725 Copyright ©2003 Watam Press

ON LYAPUNOV THEOREMS FOR DESCRIPTOR SYSTEMS

Guofeng Zhang^{1,2}, Qingling Zhang¹, Tongwen Chen³, and Yanping Lin²

¹Department of Mathematics

 Northeastern University, Shenyang, Liaoning, P. R. China 110004
²Department of Mathematical and Statistical Sciences University of Alberta, Edmonton, Alberta T6G 2G1
³Department of Electrical and Computer Engineering University of Alberta, Edmonton, Alberta T6G 2V4

Abstract. In this paper, based on the definition of pseudo-observability for a descriptor system, the relationship between observability and admissibility is established by means of a generalized Lyapunov equation. The H_2 norm of the system is computed using this Lyapunov equation. A static output feedback is designed which guarantees the admissibility of the resulting closed-loop system. Two examples are given to illustrate the main results in this paper.

Keywords. Descriptor systems, pseudo-observability, pseudo-controllability, admissibility, Lyapunov equations.

AMS (MOS) subject classification: 93B05, 93B07, 93B52, 93D05, 93D15, 93D20.

1 Introduction

For a standard state space system of the form

$$\Sigma_0: \qquad \dot{x}(t) = Ax(t) + Bu(t),$$

$$y(t) = Cx(t),$$

where $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^p$ are state, control input and measured output, respectively; A, B, C are all constant real matrices of compatible sizes, the following result is well-known.

Proposition 1 For the system Σ_0 , when any two of the following statements hold, the third is true:

- Σ_0 is observable.
- Σ_0 is asymptotically stable.
- There exists a symmetric positive definite matrix V > 0 satisfying the following Lyapunov equation

$$A^T V + V A = -C^T C. (1)$$