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1 Introduction

Consider a differential equation in a given space X

u′(t) = f(t, u(t)) , t ∈ [0, T ] (1)

with a specified initial condition

u(0) = u0 , (2)

where T > 0 , and f : [0, T ]×X → X .

If X = Rn , the classical Peano’s theorem gives us the existence of a
(local) solution u : [0, δ] → Rn of the initial problem (1)-(2) for some δ ∈
(0, T ] . If the function f is, for example, linear in u or bounded, then we can
take δ = T and have a global solution on the interval [0, T ] . Moreover, if
f satisfies a Lipschitz condition in the second variable u, then the Picard-
Lipschitz theorem ensures the existence of a unique solution.

In the case that X is a Banach space, the continuity of f does not guar-
antee the existence of a local solution, i.e., Peano’s theorem does not hold,
but the Picard-Lipschitz theorem is still valid.

To deal with fuzzy differential equations, we have to consider the space
X = En . Interpreting the derivative in the sense of Hukuhara, it is known
the validity of the existence and uniqueness Picard-Lipschitz theorem [10].
Peanos’s theorem is still valid under some additional conditions [15,17,18].


