Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 10 (2003) 911-916 Copyright ©2003 Watam Press

ON THE RECURSIVE SEQUENCE $x_{n+1} = \alpha_n + \frac{x_{n-1}}{x_n}$ II

Stevo Stević

Matematički Fakultet Studentski Trg 16, 11000 Beograd, Serbia, Yugoslavia E-mail: sstevic@ptt.yu; sstevo@matf.bg.ac.yu

Abstract. In this paper we investigate the boundedness character and the periodic nature of the positive solutions of the difference equation

$$x_{n+1} = \alpha_n + \frac{x_{n-1}}{x_n}, \quad n = 0, 1, 2, \dots$$

where α_n is a two periodic sequence of nonnegative real numbers and where the initial conditions x_{-1} and x_0 are arbitrary positive real numbers.

Keywords. Prime period two, nonnegative, difference equation, bounded, sequence. **AMS (MOS) subject classification:** Primary 39A10.

1 Introduction and some basic observations

In [3] Ladas offered the following conjecture:

Conjecture A. Every positive solution of

$$x_{n+1} = \alpha + \frac{x_{n-1}}{x_n}, \quad n = 0, 1, 2, \dots$$
 (1)

where $\alpha \geq 0$ is bounded if and only if $\alpha \geq 1$. Furthermore if $\alpha = 1$ every positive solution of Eq.(1) converges to a two-cycle and if $\alpha > 1$ every positive solution of Eq.(1) converges to $\alpha + 1$.

Soon after the conjecture was confirmed in [1]. The following two open questions were posed by professor Ladas in a private communication:

Question 1. Consider the difference equation

$$x_{n+1} = \alpha_n + \frac{x_{n-1}}{x_n}, \quad n = 0, 1, 2, \dots$$
 (2)

where α_n is a sequence of nonnegative real numbers which converges to $\alpha \ge 0$. What do the solutions with positive initial conditions x_{-1} and x_0 do?

Question 2. Assume that the sequence (α_n) in Eq.(2) is periodic with prime period two and nonnegative. What do the solutions with positive initial conditions x_{-1} and x_0 do?