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Abstract. In this paper, we discuss the existence of positive solutions to a certain non-
linear food chain model with degenerate self-population diffusions under homogeneous
Robin-Dirichlet boundary conditions. First we investigate the uniqueness of positive solu-
tions to predator-prey interacting system between two species with degenerate self-diffusion
rates under Robin-Dirichlet boundary conditions. Then we give sufficient and necessary
conditions for the existence of positive solutions for a food chain model with degenerate
self-diffusion rates. The method employed is a fixed point theory in a positive cone.
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1 Introduction

Of concern is the existence of positive solutions of the food-chain model with
degenerate self-population diffusions;
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in a bounded region 2 € R™ with smooth boundary where B;u = k;0u/0n+
7;u are Robin-Dirichlet boundary conditions with k; > 0, 7; > 0 fori = 1,2, 3.
A is the Laplacian operator in R", u, v and w represent the densities of
distinct three species.
a(z),b(z), c(z) € C*(Q) are nonnegative functions and some conditions on
the birth rates f, g, h will be imposed later. (See H4.1 - H4.4.) The growth
rates in the model (1.1) were motivated by the one in [8] and modified so
that our system describes food chain interactions among three species. The
functions ¢;, i = 1,2, 3 play as degenerate self-population diffusions, namely,
those could be vanished at some points in the domain 2 and depends on the



