Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 11 (2004) 589-600 Copyright ©2004 Watam Press

ON THE CONVERGENCE OF FINITE STEPS ITERATIVE SEQUENCES FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

Shih-sen Chang¹, H. W. Joseph Lee² and Yeol Je Cho³

¹Department of Mathematics, Yibin University Yibin, Sichuan 644007, and Sichuan University Chengdu, Sichuan 610064, P. R. China ²Department of Applied Mathematics The Hong Kong Polytechnic University Hung Hom, Kowloon, Hong Kong ³Department of Mathematics Education and the Research Institue of Natural Sciences Gyeongsang National University Chinju 660-701, Korea

Abstract. The purpose of this paper is to study the weak and strong convergence of finite steps iterative sequences with mean errors to a common fixed point for a finite family of asymptotically nonexpansive mappings in Banach spaces. The results presented in this paper even in the cases of N = 2 or 3 are new.

Keywords. Finite steps iterative sequence, asymptotically nonexpansive mappings, iterative sequence with mean errors, common fixed point, Opial's condition, demi-closed principle, semi-compactness.

AMS (MOS) subject classification: 47H05, 47H09, 49M05.

1 Introduction and Preliminaries

Throughout this paper we assume that E is a real Banach space, C is a nonempty closed convex subset of E and F(T) is the set of fixed points of T. We denote by $x_n \to x_0$ and $x_n \to x_0$ the strong convergence and weak convergence of $\{x_n\}$ converging to x_0 , respectively.

Recall that E is said to satisfy *Opial's condition* if, for each sequence $\{x_n\}$ in $E, x_n \rightharpoonup x$ implies that

$$\limsup_{n \to \infty} ||x_n - x|| < \limsup_{n \to \infty} ||x_n - y||$$

for all $y \in E$ with $y \neq x$.

³The corresponding author: Yeol Je Cho.

 $^{^{3}}$ The third author was supported financially from the Korea Research Foundation Grant (KRF 2003-002-C00018).