Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 11 (2004) 481-490 Copyright ©2004 Watam Press

ON KANTOROVICH INEQUALITY AND HÖLDER-MCCARTHY INEQUALITIES

Chia-Shiang Lin¹ and Yeol Je Cho²

¹ Department of Mathematics Bishop's University, Lennoxville, Quebec J1M 1Z7, Canada

²The Research Institute of Natural Sciences Department of Mathematics Education, College of Education Gyeongsang National University, Chinju 660-701, Korea

Abstract. We shall use the covariance-variance inequality as a tool to generalize Kantorovich inequality. We consider Hölder-McCarthy inequalities and related reverse inequalities. And finally the bound of a generalized Hölder-McCarthy inequality by recursion is given by way of the covariance-variance inequality. This is a continuous investigation in a different direction for Hölder-McCarthy inequalities from our previous article [5].

Keywords. Hölder-McCarthy inequality, Kantorovich inequality, covariance-variance inequality (c-v inequality), Löwner-Heinz inequality, bound of operator inequality. **AMS (MOS) subject classification:** 47A63, 47A30.

1. Notations and introduction

In what follows the capital letters mean bounded linear operators on a Hilbert space H and the identity operator is denoted by I. We write $A \ge 0$ if A is positive, i.e., $(Ax, x) \ge 0$ for all $x \in H$ and A > 0 if A is positive and invertible. If S and T are selfadjoint, we write $T \ge S$ in case $T - S \ge 0$.

The following well known inequalities are crucial. McCarthy [6] proved the next two inequalities, called Hölder-McCarthy inequalities in literature, by using the spectral resolution of a positive operator and the Hölder inequality. More precisely, if $A \ge 0$, then, for any unit vector $x \in H$ and a real number r,

(A) $(A^r x, x) \leq (Ax, x)^r$ for $r \in [0, 1]$,

(**B**) $(Ax, x)^r \leq (A^r x, x)$ for $r \geq 1$.

Let us add one more inequality which appeared in [2, Theorem 1.5].

 $^{^2{\}rm The}$ second author was supported financially by the Korea Research Foundation Grant (KRF-2001-005-D00002).