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Abstract. Consider the following evolution equations without delay or with finite or
infinite delay in a general Banach space X,

u′(t) + A(t)u(t) = f(t, u(t)), t > 0,

u′(t) + A(t)u(t) = f(t, u(t), ut), t > 0.

We will analyze some fixed point theorems and then see how they can be applied to derive

periodic solutions for the above mentioned equations.
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1 INTRODUCTION

Let’s first look at the following heat equation,

vt(t, x) = vxx(t, x) for (t, x) ∈ (0,∞)× [0, 1], (1.1)

with some initial and boundary conditions. If we define

u(t) = v(t, ·), A = ∂xx in Lp(0, 1) (with some boundary conditions)

then we obtain the following evolution equation

u′(t) = Au(t), t > 0, u(0) = u0.

Based on this and other equations in applications, we generalize and then
consider some abstract evolution equations in infinite dimensional Banach
spaces, such as the following evolution equation without delay,

u′(t) + A(t)u(t) = f(t, u(t)), t > 0, u(0) = u0,


