Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 11 (2004) 653-664 Copyright ©2004 Watam Press

RICHARDSON EXTRAPOLATION OF GALERKIN FINITE ELEMENT METHODS FOR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Wanzhen Huang¹, Tang Liu², Ming Rao³, Hossein Azari⁴, and Shuhua Zhang²

¹Department of Mathematical Sciences Lakehead University, Thunder Bay, Ontario P7B 5E1 ²Department of Mathematics Tianjin University of Finance and Economics, Tianjin 300222 Liu Hui Center for Applied Mathematics Nankai University and Tianjin University ³ Department of Chemical and Materials Engineering University of Alberta, Edmonton, Alberta T6G 2G6 ⁴Institute for Studies of Theoretical Physics and Mathematics Niavaran Square, Tehran, Iran

Abstract. The object of this paper is to investigate Richardson extrapolation of two different schemes for finite element approximations of a linear parabolic partial differential equation with homogeneous Dirichlet boundary conditions, which can lead significantly to the improvement in the accuracy of approximations with the help of an interpolation postprocessing technique. As a by-product, we illustrate that all the approximations of higher accuracy can be used to generate efficient a posteriori error estimators.

Keywords. Parabolic partial differential equations, Galerkin finite element methods, Richardson extrapolation, interpolation postprocessing, a posteriori error estimators.

AMS (MOS) subject classification: 76S05, 45K05, 65M12, 65M60, 65R20.

1 Introduction

Our purpose in this paper is to study the Galerkin finite element method for a linear parabolic partial differential equation whose classical formulation is: Find u = u(x, y, t) such that

$$u_t = \nabla \cdot (a(x, y, t)\nabla u) + f \quad \text{in } \Omega \times J,$$

$$u = 0 \quad \text{on } \partial\Omega \times J,$$

$$u(x, y, 0) = u_0(x, y) \quad \text{in } \Omega,$$
(1.1)

where $\Omega \subset \mathbb{R}^2$ is an open bounded domain with a Lipschitz boundary $\partial\Omega$, J = (0,T] with T > 0, $f \in L^2(\Omega)$ and $a(x, y, t) \geq a_0$ are known functions, and a_0 is a known positive constant.

The problem (1.1) can arise from many physical processes and the study of its numerical methods has received considerable attention in the past. For example, Thomée [19] has formulated finite element methods for the problem