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Abstract. We study the existence and multiplicity of positive solutions for generalize

Emden-Fowler type singular boundary value systems. We give an existence result for

Dirichlet Emden-Fowler system and existence, nonexistence and multiplicity result for two

point Emden-Fowler system. We see that the results may vary mainly due to boundary

conditions.
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1 Introduction

In this paper, we consider the existence and multiplicity of positive solutions
for second order systems of the form

(ST )





u′′(t) + λq1(t)f(u(t), v(t)) = 0,
v′′(t) + µq2(t)g(u(t), v(t)) = 0, t ∈ (0, 1),
u(0) = a, u(1) = b and v(0) = c, v(1) = d,

where a, b, c, d ≥ 0, λ, µ nonnegative real parameters, f, g ∈ C(R2
+,R+) and

qi ∈ C((0, 1), (0,∞)) may be singular at t = 0 and/or 1. We denote R+ =
[0,∞), R2

+ = R+ ×R+ and R2
0 = R2

+ \ {(0, 0)}. For one dimensional scalar
equations, existence and multiplicity of positive solutions for (ST ) have been
studied by several authors([1] ∼ [5],[7],[8],[11]∼ [15]). Recently, for systems,
Lee[9] studied generalized Gelfand type Dirichlet boundary value systems i.e.
f(0, 0) > 0, g(0, 0) > 0 and a = b = c = d = 0. Under assumptions
(H)

∫ 1

0
s(1− s)qi(s)ds < ∞,

(H ′) f and g are nondecreasing on R2
+,

i.e. f(u1, v1) ≤ f(u2, v2) and g(u1, v1) ≤ g(u2, v2) whenever (u1, v1) ≤
(u2, v2), where the inequality on R2

+ can be understood componentwise.
(H1) f∞ , lim(u,v)→∞

f(u,v)
u+v = ∞, g∞ , lim(u,v)→∞

g(u,v)
u+v = ∞,

he proved that there exists (λ∗, µ∗) > (0, 0) such that problem (ST ) has


