Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 303-328 Copyright ©2005 Watam Press

IDENTIFICATION PROBLEMS FOR SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS OF PARABOLIC TYPE I *

Angelo Favini¹ and Alfredo Lorenzi²

¹Department of Mathematics Università degli Sudi di Bologna, Piazza di Porta S. Donato 5, 40126 Bologna, Italy ²Department of Mathematics Università degli Sudi di Milano, via Saldini 50, 20122 Milano, Italy

Università degli Sudi di Milano, via Saldini 50, 20133 Milano, Italy

Abstract. We recover unknown kernels, depending on time only, in linear singular firstorder integro-differential Cauchy problems in Banach spaces. Singular means here that the integro-differential equation is *not* in normal form neither can it be reduced to such a form. For this class of problems we prove local and global in time existence and uniqueness theorems strictly related to the regularity results proved in [4] for the direct problem. Moreover, we give several applications to explicit singular partial integro-differential equations of parabolic type.

Keywords. Identifying unknown kernels. Abstract linear singular first-order integrodifferential equations. Existence and uniqueness results. Linear singular partial integrodifferential equations of parabolic type.

AMS (MOS) subject classification: Primary 45Q05. Secondary 45K05, 35K20.

1 Introduction

In this paper we will be concerned with the problem of recovering the kernel k in the following integro-differential Cauchy problem related to the complex Banach space X, with norm $\|\cdot\|$:

$$MD_t u(t) + Lu(t) = \int_0^t k(t-s)L_1 u(s) \,\mathrm{d}s + f(t), \qquad 0 \le t \le \tau, \quad (1.1)$$

$$u(0) = u_0. (1.2)$$

We assume that L, L_1, M are *closed* linear operators from X into itself, with M being *not* necessarily *invertible*, whose domains are related by the relationship $\mathcal{D}(L) \subseteq \mathcal{D}(L_1) \cap \mathcal{D}(M)$. Moreover, we assume that L admits a continuous *inverse operator*. Hence $T = ML^{-1} \in \mathcal{L}(X)$, the space of all bounded linear operators from X into itself, endowed with the uniform norm.

^{*}Work partially supported by the Italian Ministero dell'Istruzione, dell'Università e e della Ricerca and by University of Bologna Funds for selected research topics.