Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 519-527 Copyright ©2005 Watam Press

On Positive Fixed Points of Countably Condensing Mappings

Yu Qing Chen¹, Yeol Je Cho² and Donal O'Regan³

¹Department of Mathematics Foshan University Foshan, Guangdong 528000, P. R. China ²Department of Mathematics Education and the RINS College of Education Gyeongsang National University Chinju 660-701, Korea ³Department of Mathematics National University of Ireland Galway, Ireland

Abstract. In this paper, we study the following equation

x = Tx

in a cone P of a Banach space X, where $T: \overline{\Omega} \cap P \to X$ is a countably condensing mapping, Ω is an open bounded subset of X. Existence results are obtained under suitable boundary conditions, and our results generalize the corresponding results in Petryshyn [16].

Key Words: Fixed point, countably condensing mapping, countably *k*-set contraction, quasi-normal cone, fixed point index.

AMS (MOS) Subject Classification: 1991 Mathematics Subject Classification: 47H10, 54H25.

1 Introduction

Let X be a real Banach space and $T : D(T) \subseteq X \to X$ be a nonlinear mapping. T is said to be *countably condensing* (respectively, *countably k-set contraction*) if

 $\alpha(T(E)) < \alpha(E)$ (respectively, $\alpha(T(E)) \le k\alpha(E)$),

where k > 0 is a constant for any countably bounded subset E of D(T) satisfying $\alpha(E) \neq 0$, where $\alpha(\cdot)$ is the Kuratowskii measure of non-compactness. We refer the reader to [1], [4], [5], [10] and [17] for a discussion of countably condensing mappings.

 $^{^2 \}mathrm{The}$ corresponding author: yjchogsnu.ac.kr (Yeol Je Cho).

 $^{^2\}mathrm{The}$ second author was supported from the Korea Research Foundation Grant (KRF-2003-005-C00013).