Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 417-422 Copyright ©2005 Watam Press

FORCED OSCILLATION FOR A CLASS OF IMPULSIVE HYPERBOLIC DIFFERENTIAL EQUATIONS

Lihu Deng 1,2 Chunlai Mu 1

¹Mathematics college Sichuan University, Chengdu, 610064 P.R. China ²Institute of Applied Mathematics Dongguan University of Technology, Dongguan, 523106, P.R. China

Abstract. In this paper, we use a new method to investigate forced oscillation of solutions for a class of impulsive hyperbolic differential equations satisfying Robin boundary condition. (i.e., using Robin eigenvalue problem to study the Robin boundary value problem). Some sufficient conditions are obtained.

Keywords. Hyperbolic differential equation; impulsive; forced oscillation; Robin boundary condition; Robin eigenvalue problem

AMS (MOS) subject classification: 35B05, 35K60

1 Introduction

Recently, many people have studied impulsive partial differential equations. L.H. Erbe, H.I. Freedman, X Z Liu , and J H Wu [1] have given comparison principles for impulsive parabolic equations; D. Bainov , Z. Kamont , and E. Minchev [2] have studied periodic boundary value problem for impulsive hyperbolic partial differential equations of first order; L Q Zhang[3] has given oscillation criteria for hyperbolic partial differential equations with fixed moments of impulse effects; L H Deng and W G Ge [4] have given oscillation criteria for a class of impulsive parabolic equations. In this paper, we use a new method to investigate forced oscillation of the following impulse hyperbolic differential equation satisfying Robin boundary condition(i.e.,using Robin eigenvalue problem(see formula (3)) to study the Robin boundary value problem (1)-(2)).

$$\begin{cases} u_{tt} = a(t) \triangle u - g(t, x) f(u) + h(t, x) & t \neq t_k \\ u(t_k^+, x) - u(t_k^-, x) = b_k u(t_k, x) & k = 1, 2, \cdots \\ u_t(t_k^+, x) - u_t(t_k^-, x) = c_k u_t(t_k, x) & k = 1, 2, \cdots \end{cases}$$
(1)

$$\frac{\partial u}{\partial n} + \beta(x)u(t,x) = 0, \quad x \in \partial\Omega,$$
(2)

where \triangle is the Laplacian, u = u(t, x), $(t, x) \in R_+ \times \partial \Omega = G$, $\Omega \subseteq R^n$ is a bound domain with piecewise smooth boundary $\partial \Omega$, $R_+ = [0, +\infty)$, *n* is the