Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 607-619 Copyright ©2005 Watam Press

THE STABILITY FOR A DELAY LOGISTIC EQUATION WITH PIECEWISE CONSTANT ARGUMENT

Zongyi Hu, Zhicheng Wang and Jun Wu

College of Mathematics and Econometrics, Hunan University, Changsha 410082, P. R. China

Abstract. In this paper we give sufficient conditions for the uniform stability and the globally asymptotic stability of the delay logistic equation with piecewise constant argument

$$y'(t) = r(t)y(t) \left[1 - \frac{y([t-\tau])}{K}\right], \quad t \ge \tau,$$

where $[\cdot]$ denotes the greatest integer function, $r : [\tau, \infty) \to [\tau, \infty)$ is a continuous function, τ is a nonnegative integer, and K is a positive constant.

Keywords. Logistic equation, piecewise constant argument, uniform stability, globally asymptotic stability, delay.

AMS (MOS) subject classification: 34K20

1 Introduction and main results

In this paper, we consider a delay logistic equation with piecewise constant argument

$$y'(t) = r(t)y(t) \left[1 - \frac{y([t-\tau])}{K} \right], \quad t \ge \tau,$$
(1.1)

with the initial condition

$$y(0) = y_0 > 0, y(-j) = y_{-j} \ge 0, j = 1, 2, \cdots, \tau,$$
(1.2)

where $[\cdot]$ denotes the greatest integer function, τ is a nonnegative integer, K is a positive constant and $r : [T, \infty) \to [\tau, \infty)$ is a positive continuous function.

When $\tau = 0$, (1.1) reduces to the following logistic equation with piecewise constant argument

$$y'(t) = r(t)y(t) \left[1 - \frac{y([t])}{K}\right], \quad t \ge 0,$$
 (1.3)

which has been studied by Matsunaga, Hara and Sakata [1]. In [1], the authors gave the following result: