Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 633-641 Copyright ©2005 Watam Press

NEW STABILITY CRITERIA OF DELAY PARTIAL DIFFERENCE EQUATIONS

Chuan Jun Tian¹, Bing Gen Zhang² and Hui Wang¹

¹Department of Electronics, College of Information Engineering ShenZhen University, ShenZhen, Guangdong 518060, P.R.China Email: tiancj@szu.edu.cn ²Department of Applied Mathematics

Ocean University of Qingdao, Qingdao 266003, P.R.China

Abstract. This paper is concerned with the following linear delay partial difference equation

 $u(i, j+1) = a(i, j)u(i+1, j) + b(i, j)u(i, j) + p(i, j)u(i - \sigma, j - \tau), \quad i, j \in N_0$

where σ and τ are nonnegative integers, $\{a(i,j)\}, \{b(i,j)\}\)$ and $\{p(i,j)\}\)$ are double real sequences. Sufficient conditions for stability and instability of this equation are derived. **Keywords.** Partial difference equation, stable, unstable, exponentially stable. **AMS subject classification:** 39A10

1 Introduction

Recently, there have been many papers that study the qualitative theory of difference equations [1-8]. In particular, the oscillation and frequent oscillation of difference equations are studied in [4,5] and the stability of difference equations is discussed in [2,6-8].

In this paper, we consider the partial difference equation of the form

$$u(i, j+1) = a(i, j)u(i+1, j) + b(i, j)u(i, j) + p(i, j)u(i - \sigma, j - \tau), \quad (1.1)$$

where σ and τ are nonnegative integers, and $\{a(i, j)\}, \{b(i, j)\}\)$ and $\{p(i, j)\}\)$ are real sequences defined on $i \ge 0$ and $j \ge 0$.

By a solution of Eq.(1.1) we mean a real double sequence $\{u(i, j)\}$ which is defined for $i \ge -\sigma$ and $j \ge -\tau$, and satisfies (1.1) for $i \ge 0$ and $j \ge 0$.

Let t be an integer, $N_t = \{t, t+1, \cdots\}$ and $\Omega = N_{-\sigma} \times N_{-\tau} \setminus N_0 \times N_1$. It is obvious that for any given sequence $\varphi = \{\varphi(i, j)\}$ defined on Ω , it is easy to construct by induction a double sequence $\{u(i, j)\}$ which equals φ on Ω and satisfies (1.1) on $N_0 \times N_1$. The sequence $\{u(i, j)\}$ is said to be a solution of Eq.(1.1) with the initial condition φ .

Stability of Eq.(1.1) has been investigated in [6-8] by several authors. In fact, Lin and Cheng [6] only considered a special case of (1.1) where p(i, j) = 0 for any $i, j = 0, 1, 2 \cdots$. Zhang and Tian [7], Zhang and Deng [8] obtained several stability criteria of Eq.(1.1) when $p(i, j) \neq 0$ for some $i, j \in N_0$. In