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1 Introduction

The purpose of this work is to study the existence of bounded and periodic
solutions of the following functional differential equation

{
d

dt
x(t) = F (t, x(t), xt), for t ≥ 0

x0 = ϕ ∈ C = BC ((−∞, 0] ,Rn) ,
(1)

where BC ((−∞, 0] ,Rn) is the space of bounded continuous functions from
(−∞, 0] into Rn provided with the uniform norm topology, it’s norm is de-
noted by ‖.‖, F is a function from R+ × Rn × C into Rn satisfying some
assumptions (see below), and for every t ≥ 0, the function xt ∈ C is defined
by

xt (θ) = x (t + θ) , for θ ∈ (−∞, 0] .

The theory of existence of solutions of functional differential equations in
infinite delay has been established at first by Hale and Kato [5] and after it has
been developed by several authors, for more details we refer to Naito et al [15].
Note that in finite delay case, the phase space is the space of all continuous
functions from [−τ, 0] into E and in that case the theory for such equation
is developed by several authors, we refer to Hale et al [4]. In infinite delay
case the abstract phase space is not necessarily C, however it’s assumed to
satisfy some axioms which has been introduced at first Those axioms ensure
the existence of solutions for infinite delay differential equations. Note that
the space BC ((−∞, 0] ,Rn) doesn’t satisfy axiom (A1) see Hale et al [4], p.


