Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 12 (2005) 795-809 Copyright ©2005 Watam Press

Hyperbolic Real Quadratic Cellular Automata

J. Delgado¹, N. Romero², A. Rovella³ and F. Vilamajó⁴

¹Universidade Federal Fluminense. Instituto de Matemática Rua Mario Santos Braga S.N. CEP 24020-140 Niterói (RJ), Brasil

²Universidad Centroccidental Lisandro Alvarado. Departamento de Matemáticas. Decanato de Ciencias y Tecnología Apdo. 400. Barquisimeto, Venezuela

³Universidad de La República. Facultad de Ciencias. Centro de Matemática Iguá 4225. C.P. 11400. Montevideo, Uruguay

⁴Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada 2 Colom 11, 08222. Terrasa, Barcelona, Spain

Abstract. In this paper we develop some techniques to obtain global hyperbolicity for a certain class of endomorphisms of \mathbb{R}^n called real cellular automata, which are characterized by the property of commuting with a shift. In particular, we show that one parameter families of generic quadratic cellular automata in \mathbb{R}^n are hyperbolic for large values of the parameter.

Keywords. Hyperbolicity. ω -limit set. Lattice Dynamical Systems. Cellular Automaton. Coupled Map Lattice.

2000 AMS (MOS) subject classification: 37C05 37D05

1 Definitions and statement of results

Several mathematical and computational models, as those that arise from biological networks, image processing or fluid dynamics by discretizing ordinary differential equations and from the qualitative analysis of the evolution of spatially extended dynamical systems given by partial differential equations, take us to the study of a special class of dynamical systems known as Lattices Dynamical Systems (LDS). Roughly speaking, a LDS is an infinite system of ordinary differential equations (continuous time) or difference equations (discrete time).

In order to define a discrete time lattice dynamical system, let Ω be a lattice (with discrete structure) whose elements are called cells (or sites). For each $\omega \in \Omega$, let X_{ω} be a topological space (in most applications those spaces are the same) and $\mathcal{M} = \prod_{\omega \in \Omega} X_{\omega}$ endowed with the product topology. A LDS is a pair (\mathcal{M}, F) , where $F = \{F_{\omega}\}_{\omega \in \Omega} : \mathcal{M} \to \mathcal{M}$ is a product structure preserving mapping, also called the global transition function, that is $F(\{x_{\omega}\}_{\omega \in \Omega}) = \{F_{\omega}(x)\}_{\omega \in \Omega}$. The state-transition in (\mathcal{M}, F) is given by the difference equation x(n+1) = F(x(n)), where $x(n) = \{x_{\omega}(n)\}_{\omega \in \Omega} \in \mathcal{M}$ for every $n \in \mathbb{Z}_+$. Cellular Automata (CA) are LDS's for which $\Omega = \mathbb{Z}^k$