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Abstract. In this paper we develop some techniques to obtain global hyperbolicity for a

certain class of endomorphisms of Rn called real cellular automata, which are characterized

by the property of commuting with a shift. In particular, we show that one parameter

families of generic quadratic cellular automata in Rn are hyperbolic for large values of the

parameter.
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1 Definitions and statement of results

Several mathematical and computational models, as those that arise from
biological networks, image processing or fluid dynamics by discretizing ordi-
nary differential equations and from the qualitative analysis of the evolution
of spatially extended dynamical systems given by partial differential equa-
tions, take us to the study of a special class of dynamical systems known
as Lattices Dynamical Systems (LDS). Roughly speaking, a LDS is an infi-
nite system of ordinary differential equations (continuous time) or difference
equations (discrete time).

In order to define a discrete time lattice dynamical system, let Ω be a
lattice (with discrete structure) whose elements are called cells (or sites).
For each ω ∈ Ω, let Xω be a topological space (in most applications those
spaces are the same) and M =

Y
ω∈Ω

Xω endowed with the product topology.

A LDS is a pair (M, F ), where F = {Fω}ω∈Ω : M → M is a product
structure preserving mapping, also called the global transition function, that
is F ({xω}ω∈Ω) = {Fω(x)}ω∈Ω. The state-transition in (M, F ) is given by
the difference equation x(n + 1) = F (x(n)), where x(n) = {xω(n)}ω∈Ω ∈M
for every n ∈ Z+. Cellular Automata (CA) are LDS’s for which Ω = Zk


