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Abstract. In this paper we develop some techniques to obtain global hyperbolicity for a
certain class of endomorphisms of R™ called real cellular automata, which are characterized
by the property of commuting with a shift. In particular, we show that one parameter
families of generic quadratic cellular automata in R™ are hyperbolic for large values of the
parameter.
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1 Definitions and statement of results

Several mathematical and computational models, as those that arise from
biological networks, image processing or fluid dynamics by discretizing ordi-
nary differential equations and from the qualitative analysis of the evolution
of spatially extended dynamical systems given by partial differential equa-
tions, take us to the study of a special class of dynamical systems known
as Lattices Dynamical Systems (LDS). Roughly speaking, a LDS is an infi-
nite system of ordinary differential equations (continuous time) or difference
equations (discrete time).

In order to define a discrete time lattice dynamical system, let €2 be a
lattice (with discrete structure) whose elements are called cells (or sites).
For each w € , let X, be a topological space (in most applications those
spaces are the same) and M = HXW endowed with the product topology.

wen
A LDS is a pair (M, F), where F = {F,}ueq : M — M is a product
structure preserving mapping, also called the global transition function, that
is F{zw}lwen) = {F.(2)}weq. The state-transition in (M, F) is given by
the difference equation z(n + 1) = F(z(n)), where z(n) = {z,(n)}weq € M
for every n € Z,. Cellular Automata (CA) are LDS’s for which Q = Z*



