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Abstract. It is known that the Butler-Rassias functional equation (1) is stable in the

sense of Hyers and Ulam. In this paper, we will improve the previous result of the Hyers-

Ulam stability of that equation.
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1 Introduction

In 1940, S. M. Ulam [11] gave a wide ranging talk before the Mathematics
Club of the University of Wisconsin in which he discussed a number of impor-
tant unsolved problems. Among those was the following question concerning
the stability of homomorphisms:

Let G1 be a group and let G2 be a metric group with a metric
d(·, ·). Given ε > 0, does there exist a δ > 0 such that if a function
h : G1 → G2 satisfies the inequality d(h(xy), h(x)h(y)) < δ for
all x, y ∈ G1 then a homomorphism H : G1 → G2 exists with
d(h(x),H(x)) < ε for all x ∈ G1 ?

The case of approximately additive functions was solved by D. H. Hyers
[5] under the assumption that G1 and G2 are Banach spaces.

Taking this fact into account, the additive Cauchy functional equation
f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam stability. This ter-
minology is also applied to the case of other functional equations. For more
detailed definition of such terminology one can refer to [4, 6, 7].

In 2003, S. Butler [3] posed the following problem:

Problem 1 (Steven Butler) Show that for c < −1 there are exactly
two solutions f : R → R of the functional equation, f(x + y) = f(x)f(y) +
c sin x sin y.

Recently, Michael Th. Rassias excellently answered this problem by prov-
ing the following theorem (see [10]):


