Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 13 (2006) 193-197 Copyright ©2006 Watam Press

REMARKS ON HYERS-ULAM STABILITY OF BUTLER-RASSIAS FUNCTIONAL EQUATION

Soon-Mo Jung¹ and Bohyun Chung²

Mathematics Section, College of Science and Technology Hong-Ik University, 339-701 Chochiwon, Korea ¹E-mail: smjung@wow.hongik.ac.kr ²E-mail: bohyun@wow.hongik.ac.kr

Abstract. It is known that the Butler-Rassias functional equation (1) is stable in the sense of Hyers and Ulam. In this paper, we will improve the previous result of the Hyers-Ulam stability of that equation.

Keywords. Stability, Hyers-Ulam stability, Hyers-Ulam-Rassias stability, Functional equation, Butler-Rassias equation.

AMS (MOS) subject classification: 39B82, 39B22.

1 Introduction

In 1940, S. M. Ulam [11] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms:

Let G_1 be a group and let G_2 be a metric group with a metric $d(\cdot, \cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if a function $h: G_1 \to G_2$ satisfies the inequality $d(h(xy), h(x)h(y)) < \delta$ for all $x, y \in G_1$ then a homomorphism $H: G_1 \to G_2$ exists with $d(h(x), H(x)) < \varepsilon$ for all $x \in G_1$?

The case of approximately additive functions was solved by D. H. Hyers [5] under the assumption that G_1 and G_2 are Banach spaces.

Taking this fact into account, the additive Cauchy functional equation f(x + y) = f(x) + f(y) is said to have the Hyers-Ulam stability. This terminology is also applied to the case of other functional equations. For more detailed definition of such terminology one can refer to [4, 6, 7].

In 2003, S. Butler [3] posed the following problem:

Problem 1 (Steven Butler) Show that for c < -1 there are exactly two solutions $f : \mathbf{R} \to \mathbf{R}$ of the functional equation, $f(x + y) = f(x)f(y) + c \sin x \sin y$.

Recently, Michael Th. Rassias excellently answered this problem by proving the following theorem (see [10]):