Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 13 (2006) 311-319 Copyright ©2006 Watam Press

PERIODIC SOLUTIONS FOR p-LAPLACIAN LIKE SYSTEMS WITH DELAY

P. Amster^{1,2}, P. De Nápoli¹ and M.C. Mariani³

¹Depto. de Matemática - FCEyN - Univ. de Buenos Aires C. Universitaria, Pab. I, 1428 Buenos Aires, Argentina ²CONICET ³Department of Mathematical Sciences New Mexico State University, Las Cruces, NM 88003-0001

Abstract. We study the existence of periodic solutions for a system involving p-Laplacian type operators with a fixed delay. We prove the existence of at least one periodic solution of the problem applying the Leray-Schauder degree theory.

Keywords. p-Laplacian, Leray-Schauder degree, systems with delay, periodic solutions AMS (MOS) subject classification: 34B15, 34C25

1 Introduction

In the last years there has been a great interest in problems involving the p-Laplacian operator and its generalizations. Usually variational or topological methods are employed for studying this kind of problems (see for example [2], [3], [4]).

In this work, we apply the Leray-Schauder degree theory to study the existence of periodic solutions for a system involving p-Laplacian type operators, with a fixed delay.

When studying the existence of periodic solutions of quasilinear ordinary differential equations, usually the Leray-Schauder degree theory and Mawhin coincidence degree theory are applied (see for example [1]).

In [5] R. Manásevich and J. Mawhin have studied the existence of periodic solutions for nonlinear systems of the type:

$$\phi(u')' = f(t, u, u')$$

where $\phi : \mathbb{R}^N \to \mathbb{R}^N$ satisfies some monotonicity conditions that ensure that ϕ is an homeomorphism onto \mathbb{R}^N . Namely, they have assumed the following conditions on ϕ :

1. For any $x_1, x_2 \in \mathbb{R}$ with $x_1 \neq x_2$, we have that

$$\langle \phi(x_1) - \phi(x_2), x_1 - x_2 \rangle > 0.$$
 (1)