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Abstract. Synchronization of periodic trajectories of linearly coupled map lattices

with delayed coupling is investigated. A quantity d involving the spectra of coupling

matrix and the dynamics of an individual node is introduced to analyze the stability of

the synchronized periodic trajectory. A sufficient criterion guaranteeing synchronization

and de-synchronization of the periodic trajectory is obtained. Dependence of the stability

of the synchronized trajectory on the coupling delay is also revealed.
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1 Introduction

Linearly Coupled Map Lattices (LCMLs) constitute a large class of dynamical
systems with discrete space and time, as well as continuous state (see [4], [6]).
The coupled system can be modelled as follows:

xi(t + 1) = f(xi(t)) +
ε

ki

m∑

j 6=i,j=1

bij [f(xj(t))− f(xi(t))]

where t ∈ N , xi(t) denotes the state value of node i, i = 1, 2, · · · ,m, f(·) is
a continuous function, bij ≥ 0, ki =

∑
j 6=i

bij , and ε is the coupling strength.

In many biological and physical systems, coupling delay occurs among
nodes in the networks (see [1]). Then, the following LCMLs with coupling
delay is considered:

xi(t + 1) = f(xi(t)) +
ε

ki

m∑

j 6=i,j=1

bij

[
f(xj(t− τ))− f(xi(t))

]
(1)

where τ is the coupling delay.


