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Abstract. Consider the system of delay difference equations�
xn − xn−1 = −F (xn) + G(yn−l),
yn − yn−1 = −F (yn) + G(xn−k),

n = 1, 2, · · · ,

where k and l are positive integers, F , G ∈ C(R1), and F is nondecreasing. It is shown

that if F (x) ≥ G(x) for all x ∈ R1 (or F ≤ G for all x ∈ R1), then every bounded solution

of such a class of systems tends to a constant vector. Our results improve and extend some

corresponding ones already known.
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1 Introduction

In this paper, we consider the following difference system with delays
{

xn − xn−1 = −F (xn) + G(yn−l),
yn − yn−1 = −F (yn) + G(xn−k), n = 1, 2, · · · , (1.1)

where k and l are positive integers, F,G ∈ C(R1), and either F (x) ≥ G(x)
for all x ∈ R1 or F (x) ≤ G(x) for all x ∈ R1. Such a system can be regarded
as a discrete analogue version of the following differential system with delays:

{
x′(t) = −F (x(t)) + G(y(t− τ1)),
y′(t) = −F (y(t)) + G(x(t− τ2)),

t ≥ 0, (1.2)

where τ1 and τ2 are positive constants. The system (1.2) as models of various
phenomena have been the subject of intensive studies in recent years (see,
for example, [2, 3, 10]). In particular, if τ1 = τ2 = r and we consider the syn-
chronized solutions of (1.2) with x(t) = y(t) = ϕ(t) for t ∈ [−max{τ1, τ2}, 0],
then we get the following delay differential equations:

x′(t) = −F (x(t)) + G(x(t− r)). (1.3)
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