Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 13 (2006) 749-759 Copyright ©2006 Watam Press

AN APPLICATION OF DEGREE THEORY TO A NONLINEAR BIHARMONIC EQUATION

Tacksun Jung¹ and Q-Heung Choi²

 ¹ Department of Mathematics Kunsan National University, Kunsan 573-701, Korea
² Department of Mathematics Education Inha University, Incheon 402-751, Korea

ABSTRACT: We investigate the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, $\Delta^2 u + c\Delta u = g(u)$ in Ω , where $c \in R$ and Δ^2 denotes the biharmonic operator. We reveal the multiplicity of solutions of the nonlinear biharmonic equation by degree theory.

Keywords. Dirichlet boundary condition, multiplicity of solutions, variational reduction method, eigenvalue, degree theory

AMS subject classification: 35J35, 35J40

1 Introduction

Let Ω be a smooth bounded region in \mathbb{R}^n with smooth boundary $\partial\Omega$. We study the multiplicity of solutions of the nonlinear biharmonic equation

$$\Delta^2 u + c\Delta u = g(u) \quad \text{in } \Omega, \tag{1.1}$$

$$u = 0, \quad \Delta u = 0 \quad \text{on } \partial \Omega,$$

where $c \in R$ and Δ^2 denote the biharmonic operator. Here we assume that $g: R \to R$ is a differentiable function such that g(0) = 0 and

$$g'(\infty) = \lim_{|u| \to \infty} \frac{g(u)}{u} \in R.$$

Let $\lambda_k, k \geq 1$ denote the eigenvalues and $\phi_k, k \geq 1$ the corresponding eigenfunctions, suitably normalized with respect to $L^2(\Omega)$ inner product, of the eigenvalue problem

$$\Delta u + \lambda u = 0 \quad \text{in } \Omega,$$
$$u = 0 \quad \text{on } \partial \Omega.$$

where each eigenvalue λ_k is repeated as often as its multiplicity. We recall that $0 < \lambda_1 \leq \lambda_2 \leq \cdots \rightarrow +\infty$, and that $\phi_1(x) > 0$ for $x \in \Omega$.

We state the main result of this paper.