Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 1-11 Copyright ©2007 Watam Press

RETARDED AND MIXED NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH CONTINUOUS DELAY

T. Candan¹ and R. S. Dahiya²

¹Department of Mathematics, Faculty of Art and Science Niğde University, Niğde, 51200, Turkey. email: tcandan@nigde.edu.tr ²Department of Mathematics Iowa State University, Ames, IA 50011, U.S.A. email: rdahiya@iastate.edu

Abstract. We obtain certain theorems to establish oscillation criteria for the arbitrary order neutral functional differential equation

$$\left[r(t)[x(t) + \int_{a}^{b} p(t,\mu)x(\tau(t,\mu))d\mu]^{(n-1)}\right] + \int_{c}^{d} q(t,\xi) f(x(\sigma(t,\xi))) d\xi = 0.$$

Keywords. Oscillation, Neutral equations, Retarded differential equations, Nonlinear, Functional differential equations.

AMS (MOS) subject classification: 34K11, 34C15.

1 Introduction

In this paper we are concerned with n-th order nonlinear neutral differential equations with continuous deviating arguments

$$\left[r(t)[x(t) + \int_{a}^{b} p(t,\mu)x(\tau(t,\mu))d\mu\right]^{(n-1)}\right]' + \int_{c}^{d} q(t,\xi) f(x(\sigma(t,\xi))) d\xi = 0, \quad (1)$$

where $t \ge 0$, $r(t) \in C^1([t_0,\infty),\mathbb{R})$, r(t) > 0 and $\int^{\infty} \frac{dt}{r(t)} = \infty$, $p(t,\mu) \in C([t_0,\infty) \times [a,b],\mathbb{R})$, $0 \le P(t) = \int_a^b p(t,\mu)d\mu < 1$, $\tau(t,\mu) \in C([t_0,\infty) \times [a,b],\mathbb{R})$, $\tau(t,\mu) \le t$, and $\tau(t,\mu) \to \infty$ as $t \to \infty$ and $\mu \in [a,b]$, $q(t,\xi) \in C([t_0,\infty) \times [c,d],\mathbb{R})$ and $q(t,\xi) > 0$, $f(x) \in C(\mathbb{R},\mathbb{R})$ and xf(x) > 0 for $x \ne 0$, $\sigma(t,\xi) \in C^1([t_0,\infty) \times [c,d],\mathbb{R})$, $\xi \in [c,d]$.

A solution $x(t) \in C([t_0, \infty), \mathbb{R})$ of (1) is called oscillatory if x(t) has arbitrarily large zeros in $[t_0, \infty)$, $t_0 > 0$. Otherwise x(t) is called nonoscillatory. Recently, the following type of equations have been studied

$$y^{(n)}(t) + q(t)f(y(\sigma(t))) = 0,$$

see Abu-Kaff & Dahiya [1], and Olah [12] and [13]. Then, these results are extended to a more general equation

$$\left[a(t)[x(t) + p(t)x(\tau(t))]^{(n-1)}\right]' + \delta q(t)f(x(\sigma(t))) = 0.$$