Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 27-45 Copyright ©2007 Watam Press

SOME EXISTENCE AND UNIQUENESS RESULTS FOR IMPULSIVE FUNCTIONAL DIFFERENTIAL EQUATIONS WITH VARIABLE TIMES IN FRÉCHET SPACES

John R. Graef¹ and Abdelghani Ouahab²

¹Department of Mathematics University of Tennessee at Chattanooga, Chattanooga, TN 37403-2504 USA ²Department of Mathematics University of Sidi Bel Abbes, BP 89 2000 Sidi Bel Abbes, Algeria

Abstract. In this paper, a recent nonlinear alternative for contraction maps in Fréchet spaces due to Frigon and Granas is used to investigate the existence and uniqueness of solutions for impulsive functional differential equations in Féchet spaces. **Keywords.** Impulsive differential equations, neutral differential equations, variable times, fixed point, Fréchet space.

AMS (MOS) subject classification: 34A37, 34G20, 34K25.

1 Introduction

This paper is concerned with the existence of solutions of initial value problems (IVP for short) for first order functional differential equations with impulsive effects of the form

$$y'(t) = f(t, y_t), \ a.e. \ t \in J = [0, \infty), \ t \neq \tau_k(y(t)), \ k \in \mathbb{N}^*,$$
 (1)

$$y(t^+) = I_k(y(t)), \quad t = \tau_k(y(t)), \quad k \in \mathbb{N}^*,$$
(2)

$$y(t) = \phi(t) \quad t \in [-r, 0],$$
 (3)

where $f: J \times D \to \mathbb{R}^n$ is a given function, $\mathbb{N}^* = \{1, 2, 3, ...\}, \tau_k : \mathbb{R}^n \to \mathbb{R}, I_k \in C(\mathbb{R}^n, \mathbb{R}^n),$

 $D = \{\psi : [-r, 0] \to \mathbb{R}^n \mid \psi \text{ is continuous everywhere } \}$

except for a finite number of points \bar{t} at which

$$\psi(\bar{t})$$
 and $\psi(\bar{t}^+)$ exist and $\psi(\bar{t}^-) = \psi(\bar{t})$ },

 $\phi \in D$, and $0 < r < \infty$. For any function y defined on $[-r, \infty)$ and any $t \in J$, we let y_t denote the element of D defined by

$$y_t(\theta) = y(t+\theta), \ \theta \in [-r,0].$$