Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 47-54 Copyright ©2007 Watam Press

TOPOLOGICAL SEQUENCE ENTROPY AND TOPOLOGICAL DYNAMICS OF INTERVAL MAPS

Jose S. Cánovas

Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Paseo de Alfonso XIII, Cartagena, Spain.

Abstract. The relationship between the topological sequence entropy and the topological dynamics of a continuous interval map is studied. Some differencies between the classical topological entropy and the topological sequence entropy are found.

Keywords. Sequence entropy, Li–Yorke chaos, topological dynamics, interval maps, variational principle.

AMS (MOS) subject classification: 37B40, 37E05, 26A18.

1 Introduction and statement of results

Let (X, d) be a metric compact space and let $f : X \to X$ be a continuous self-map on X. The pair (X, f) is called a *dynamical system*. If $n \in \mathbb{N}$, then $f^n := f \circ f^{n-1}, f^1 := f$ and f^0 is the identity on X. For $x \in X$, the sequence $\{f^n(x) : n \in \mathbb{N}\}$ is called the *orbit* of x, denoted by $\operatorname{Orb}_f(x)$.

In what follows $A = \{a_i\}_{i=1}^{\infty}$ always denote an strictly increasing sequence of positive integers. We are going to introduce the notion of topological sequence entropy of f with respect to A (see [11]). Let $Y \subseteq X$ and fix $\varepsilon > 0$ and $n \in \mathbb{N}$. A subset $E \subset Y$ is said to be $(A, n, \varepsilon, Y, f)$ -separated if for any $x, y \in E$, $x \neq y$, there is $i \in \{1, ..., n\}$ such that $d(f^{a_i}(x), f^{a_i}(y)) > \varepsilon$. Denote by $s_n(A, \varepsilon, Y, f)$ the cardinality of any maximal $(A, n, \varepsilon, Y, f)$ separated subset of Y. Define

$$s(A,\varepsilon,Y,f) := \limsup_{n \to \infty} \frac{1}{n} \log s_n(A,\varepsilon,Y,f),$$

and then, the topological entropy of f is

$$h_A(f) = \lim_{\varepsilon \to 0} s(A, \varepsilon, X, f).$$

If $A = \mathbb{N}$, then $h_A(f) = h(f)$ is the classical topological entropy of f introduced in [4]. Finally, define

 $h_{\infty}(f) := \sup\{h_A(f) : A \text{ is an increasing sequence of nonnegative integers}\}.$

Topological sequence entropy is an useful tool to characterize interval and circle maps which are chaotic in the sense of Li and Yorke (see [10] and [12]).