Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 99-122 Copyright ©2007 Watam Press

EIGENVALUE PROBLEMS AND BIFURCATION OF NONHOMOGENEOUS SEMILINEAR ELLIPTIC EQUATIONS ON UNBOUNDED CYLINDER DOMAINS

Tsing-San Hsu

Center for General Education Chang Gung University, Kwei-San, Tao-Yuan 333, Taiwan

Abstract. In this article, we consider the eigenvalue problems of Dirichlet problem

$$-\Delta u + u = \lambda(f(u) + h(x)) \text{ in } \Omega, u > 0 \text{ in } \Omega, u \in H_0^1(\Omega), \qquad (*)_\lambda$$

where $\lambda > 0$, $N \ge 2$, and Ω is an unbounded cylinder domain in \mathbb{R}^N . Under some suitable conditions on f and h, we show that there exists a positive constant λ^* such that $(*)_{\lambda}$ has at least two solutions if $\lambda \in (0, \lambda^*)$, a unique positive solution if $\lambda = \lambda^*$ and no solution if $\lambda > \lambda^*$. We also obtain some bifurcation results of the solutions at $\lambda = \lambda^*$.

Keywords. eigenvalue problems, bifurcation, elliptic equation, unbounded cylinder. AMS (MOS) subject classification: 35J20, 35J25, 35J60.

1 Introduction

Throughout this article, let $N = m + n \ge 2$, $n \ge 1$, $2^* = \frac{2N}{N-2}$ for $N \ge 3$, $2^* = \infty$ for N = 2, x = (y, z) be the generic point of \mathbb{R}^N with $y \in \mathbb{R}^m$, $z \in \mathbb{R}^n$, $N = m + n \ge 2$, $n \ge 1$ and Ω be an unbounded cylinder domain in \mathbb{R}^N .

Consider the following eigenvalue problems:

$$\begin{cases} -\Delta u + u = \lambda(f(u) + h(x)) \text{ in } \Omega, \\ u \in H_0^1(\Omega), \ u > 0 \text{ in } \Omega, \end{cases}$$
(1.1)_{\lambda}

where $\lambda > 0, 0 \in \omega \subseteq \mathbb{R}^m$ is a smooth bounded domain, $\Omega = \omega \times \mathbb{R}^n$ is an unbounded domain in \mathbb{R}^N , $h(x) \in L^2(\Omega) \cap L^{q_0}(\Omega)$ for some $q_0 > N/2$ if $N \ge 4, q_0 = 2$ if $N = 2, 3, h(x) \ge 0, h(x) \ne 0$ and f satisfies the following conditions:

- (f1) $f \in C^1([0, +\infty), \mathbb{R}^+), f(0) = 0$ and $f(t) \equiv 0$ if t < 0;
- (f2) there is a positive constant C, such that

 $|f(t)| \le C(|t| + |t|^p)$, for some 1 ;

(f3) $\lim_{t \to 0} t^{-1} f(t) = 0$;