POSITIVE SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS ON UNBOUNDED DOMAINS

Kuan-Ju Chen

Department of Applied Science, Chinese Naval Academy, P.O. BOX 90175 Zuoying, Taiwan

Abstract. In this paper, we study the existence of positive solutions for a class of semilinear elliptic systems on some classes of unbounded domains. Keywords. semilinear elliptic systems, positive solutions. AMS (MOS) subject classification: 35J50, 35J55.

1 Introduction

This paper is devoted to the study of existence of positive solutions for a class of semilinear elliptic systems of the form:

(I)
$$\begin{cases} -\Delta u + u = g(v), \ u > 0 \ \text{in } \Omega, \\ -\Delta v + v = f(u), \ v > 0 \ \text{in } \Omega, \end{cases}$$

where $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$ and Ω is an unbounded domain in \mathbb{R}^N .

The basic assumptions on the functions f and q are

(H1) $f, g \in C(\mathbb{R},\mathbb{R})$, with f(t) = g(t) = 0 for $t \le 0, f(t) > 0$ and g(t) > 0for t > 0. Both $F(t) = \int_0^t f(s) ds$ and $G(t) = \int_0^t g(s) ds$ are increasing and strictly convex in t.

(H2) $\lim_{t\to 0^+} \frac{f(t)}{t} = 0$ and $\lim_{t\to 0^+} \frac{g(t)}{t} = 0$. (H3) There exists a constant d > 0 such that $f(t) \le d(1+t^p)$ and $g(t) \le d(1+t^q)$ for all $t \in \mathbb{R}^+$, where $1 < p, q < \frac{N+2}{N-2}$ if N > 2 and 1 ifN = 1, 2.

(H4) There exists constants α , β with $p+1 < \alpha \leq 2p$ and $q+1 < \beta \leq 2q$ such that $0 < \alpha F(t) \le tf(t)$ and $0 < \beta G(t) \le tg(t)$ for t > 0.

Figueiredo and Yang [12] had shown that the existence of a ground state solution for the problem

$$-\Delta u + u = v^q$$
, $-\Delta v + v = u^p$ in \mathbb{R}^N , where $1 < p, q < \frac{N+2}{N-2}$,

by using spectral family theory of non-compact operator to find a suitable linking structure for the associated functional. In this paper, we establish