Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 363-385 Copyright ©2007 Watam Press

http://www.watam.org

PERIODIC FIRST ORDER DELAY EQUATIONS WITH STATE DEPENDENT IMPULSES

J-M. Belley¹ and S. El Alaoui²

¹Département de Mathématiques Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 email:Jean-Marc.Belley@USherbrooke.ca ²Déparetment de Mathématiques Université de Sherbrooke, Sherbrooke, Québec J1K 2R1 email:Sakina.El.Alaoui@USherbrooke.ca

Abstract. Conditions are obtained for a first order nonlinear differential equation with delay and state dependent impulses to admit a periodic solution of bounded variation. The results are applied to the logistic equation with periodic intrinsic growth rate and periodic impulsive culling.

Keywords. Generalized functions, first order delay equations, periodic solutions, state dependent impulses, a priori bounds, contraction principle, functions of bounded variation, logistic equation.

AMS (MOS) subject classification: 34A37, 34C25

1 Introduction and main results

Evolution processes subject to impulses, such as encountered in control theory and population dynamics, often give rise to a delay equation of the form

$$x'(t) + g(t - \tau, x(t - \tau)) = f(t) + \sum_{j=1}^{\infty} a_j(x) \,\delta_{t_j(x)}(t) \,. \tag{1}$$

Some recent results on the existence and stability of solutions of this equation can be found in [2]-[5], [7] and [11] for the case where the moments of impulse $t_j(x)$ are independent of the state x, while in [1] and [8] results are obtained for cases when the moments of impulse are state dependent. Processes which are subject to T-periodic influences for a given T > 0 have also been studied in the case of state independent $t_j(x)$. For example, the global behavior of a periodic logistic system with periodic impulsive perturbations is analyzed in [9], while in [10] equation (1) is studied in the context of periodic boundary conditions. In this paper we show that under certain conditions, there exists a generalized T-periodic solution of (1) which is of bounded variation on [0, T]. The logistic equation with periodic intrinsic growth rate and culling is