Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 565-576 Copyright ©2007 Watam Press

http://www.watam.org

SINGULAR HIGHER-ORDER SEMIPOSITONE NONLINEAR EIGENVALUE PROBLEMS

Xinguang Zhang¹, Lishan Liu^{1,3}, Benchawan Wiwatana
pataphee² and Yonghong Wu³

¹Department of Mathematics, Qufu Normal University, Qufu 273165, Shandong People's Republic of China zxg123242@sohu.com, lls@mail.qfnu.edu.cn

²Department of Mathematics, Mahidol University, Bangkok 10400, Thailand scbww@mahidol.ac.th

³Department of Mathematics and Statistics, Curtin University of Technology, Perth, WA6845, Australia yhwu@maths.curtin.edu.au.

Abstract. In this paper, we consider the existence of positive solutions to the following singular higher-order semipositone eigenvalue problem (HSEP):

 $\begin{cases} (-1)^{(n-k)} u^{(n)}(t) = \lambda \Big[f(t, u(t)) + q(t) \Big], & 0 < t < 1, \\ u^{(i)}(0) = 0, & 0 \le i \le k - 1, \\ u^{(i)}(1) = 0, & 0 \le i \le n - k - 1, \end{cases}$

where $n \ge 2, 1 \le k \le n-1$, and $\lambda > 0$ is a parameter. The functions f and q may have singularity at t = 0 and (or) 1, and furthermore, the nonlinear function may change sign for 0 < t < 1. Without making any monotone-type assumptions, we obtain the positive solution of the problem for λ lying in some interval, based on the Krasnaselskii's fixedpoint theorem in a cone.

Keywords. Positive solution; Semipositone; Singular eigenvalue problem; Fixed point; Cone.

AMS (MOS) subject classification: 34B15, 34B25.

1 Introduction

In this paper, we study the existence of positive solutions for the following singular higher-order semipositone eigenvalue problem (HSEP):

$$\begin{cases} (-1)^{(n-k)} u^{(n)}(t) = \lambda \Big[f(t, u(t)) + q(t) \Big], & 0 < t < 1, \\ u^{(i)}(0) = 0, & 0 \le i \le k - 1, \\ u^{(i)}(1) = 0, & 0 \le i \le n - k - 1, \end{cases}$$
(1.1)

where $n \geq 2, 1 \leq k \leq n-1$, $\lambda > 0$, $f: (0,1) \times [0,+\infty) \rightarrow [0,+\infty)$ and $q(t): (0,1) \rightarrow (-\infty,+\infty)$ are continuous and may have singularity at t = 0 and (or) 1. Furthermore, the nonlinear function is allowed to change sign.