Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 14 (2007) 805-835 Copyright ©2007 Watam Press

http://www.watam.org

GLOBAL Lⁿ STRONG SOLUTIONS TO MAGNETO-HYDRO-DYNAMICS EQUATIONS IN THE \mathbb{R}^n SPACE

Chunshan Zhao 1 and Yinnian He 2

¹Department of Mathematical Sciences, Georgia Southern University Statesboro, GA 30460, USA. Email: czhao@GeorgiaSouthern.edu ²Faculty of Science

Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China. Email: heyn@mail.xjtu.edu.cn

Abstract. We study the existence and uniqueness of global L^n strong solutions to the Magneto-Hydro-Dynamics (MHD) equations in the whole \mathbb{R}^n space. Under smallness assumption on suitable norms of initial data and external force, existence and uniqueness of global L^n strong solutions are proved. Moreover, we also present some algebraic decay properties of the unique global L^n strong solution under some assumptions on both initial data and external force.

Keywords. Strong solution, MHD equations, Algebraic decay, Existence and uniqueness. AMS (MOS) subject classification: 35K55, 76D03, 35K45

1 Introduction

Let $Q = \mathbb{R}^n \times (0, \infty) (n \ge 2)$, we consider the Magneto-Hydro-Dynamics (MHD) equations [4] in Q as follows.

$$\begin{pmatrix}
\frac{\partial u}{\partial t} - \nu \Delta u + (u \cdot \nabla)u - \frac{1}{\rho \mu} (B \cdot \nabla)B \\
+ \frac{1}{2\rho \mu} \nabla (|B|^2) + \frac{1}{\rho} \nabla \Pi = f(x, t), & \text{in } Q, \\
\frac{\partial B}{\partial t} - \lambda \Delta B + (u \cdot \nabla)B - (B \cdot \nabla)u = 0, & \text{in } Q, \\
\nabla \cdot u = 0, \nabla \cdot B = 0, & \text{in } Q, \\
\lim_{|x| \to \infty} u = 0, \quad \lim_{|x| \to \infty} B = 0, & \text{for } t \in (0, \infty),
\end{cases}$$
(1)

with initial data $u(x, 0) = \tilde{u}_0(x)$ and $B(x, 0) = \tilde{B}_0(x)$ satisfying $\nabla \cdot \tilde{u}_0(x) = \nabla \cdot \tilde{B}_0(x) = 0$ respectively. In (1), $u = (u^1(x, t), \cdots, u^n(x, t))$ and $B = (B^1(x, t), \cdots, B^n(x, t))$ are unknown velocity vector and magnetic field respectively. If is pressure and f(x, t) is external force. ν, μ and ρ are constants of kinematic viscosity, magnetic permeability and density of Eulerian flow respectively. $\lambda = \frac{\eta}{\mu}$ with electrical resistivity η . In this paper, we shall show the existence and uniqueness of global L^n

In this paper, we shall show the existence and uniqueness of global L^n strong solutions to (1) under smallness assumption on suitable norms of both