http://www.watam.org

OSCILLATION CRITERIA FOR LINEAR HAMILTONIAN SYSTEMS¹

Hongmei Han^{a} and Xiao Wang^b

^a Editorial Office of Magazine of Middle School Mathematics
Qufu Normal University, Qufu, Shandong 273165, P.R. China
^b College of Mathematical Science
Qufu Normal University, Qufu, Shandong 273165, P.R. China

Abstract– Using a generalized Riccati transformation and monotone functionals on suitable matrix space, some new oscillation criteria for linear matrix Hamiltonian systems are established. These results can be considered as generalizations and improvements of the results due to F. Meng and A. B. Mingarelli [2], I. S. Kumari and S. Umanaheswaram [4], and Q. Yang, R. Mathsen and S. Zhu [5].

 ${\bf Keywords-}\ {\rm Linear}\ {\rm Hamiltonian}\ {\rm system},\ {\rm oscillation},\ {\rm monotone}\ {\rm functional}.$

AMS (MOS) subject classification-34A30, 34C10.

1 Introduction

We consider oscillatory properties for the linear Hamiltonian vector system

$$\begin{cases} x' = A(t)x + B(t)u, \\ u' = C(t)x - A^*(t)u, \quad t \ge t_0, \end{cases}$$
(1.1)

where A(t), B(t), C(t) are real $n \times n$ matrix-valued functions, B, C are Hermitian, B is positive definite. By M^* we mean the conjugate transpose of the matrix M. For any $n \times n$ Hermitian matrix M, its eigenvalues are real numbers, we always denote them by $\lambda_1[M] \geq \lambda_2[M] \geq \cdots \geq \lambda_n[M]$. The trace of M is denoted by tr(M) and tr(M) = $\sum_{k=1}^{n} \lambda_k(M)$.

We also consider the corresponding matrix system

$$\begin{cases} X' = A(t)X + B(t)U, \\ U' = C(t)X - A^*(t)U, \quad t \ge t_0. \end{cases}$$
(1.2)

For any two solutions $(X_1(t), U_1(t))$ and $(X_2(t), U_2(t))$ of system (1.2), the Wronskian matrix $X_1^*(t)U_2(t) - U_1^*(t)X_2(t)$ is a constant matrix. In particular, for any solution (X(t), U(t)) of system (1.2), $X^*(t)U(t) - U^*(t)X(t)$ is a constant matrix.

 $^1\mathrm{THIS}$ RESEARCH WAS SUPPORTED BY THE NSF OF SHANDONG (GRANT Y2005A06).