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Abstract– Using a generalized Riccati transformation and monotone functionals on suit-

able matrix space, some new oscillation criteria for linear matrix Hamiltonian systems are

established. These results can be considered as generalizations and improvements of the

results due to F. Meng and A. B. Mingarelli [2], I. S. Kumari and S. Umanaheswaram [4],

and Q. Yang, R. Mathsen and S. Zhu [5].
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1 Introduction

We consider oscillatory properties for the linear Hamiltonian vector system
{

x′ = A(t)x + B(t)u,
u′ = C(t)x−A∗(t)u, t ≥ t0,

(1.1)

where A(t), B(t), C(t) are real n× n matrix-valued functions, B,C are Her-
mitian, B is positive definite. By M∗ we mean the conjugate transpose of
the matrix M . For any n × n Hermitian matrix M , its eigenvalues are real
numbers, we always denote them by λ1[M ] ≥ λ2[M ] ≥ · · · ≥ λn[M ]. The
trace of M is denoted by tr(M) and tr(M) =

∑n
k=1 λk(M).

We also consider the corresponding matrix system
{

X ′ = A(t)X + B(t)U,
U ′ = C(t)X −A∗(t)U, t ≥ t0.

(1.2)

For any two solutions (X1(t), U1(t)) and (X2(t), U2(t)) of system (1.2), the
Wronskian matrix X∗

1 (t)U2(t) − U∗
1 (t)X2(t) is a constant matrix. In partic-

ular, for any solution (X(t), U(t)) of system (1.2), X∗(t)U(t)− U∗(t)X(t) is
a constant matrix.
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