http://www.watam.org

IMPULSIVE BOUNDARY VALUE PROBLEMS FOR DYNAMICAL INCLUSIONS ON TIME SCALES

Yicheng Liu¹, Jun Wu² and Zhixiang Li²

¹Department of Mathematics and System Sciences, College of Science, National University of Defense Technology, Changsha, 410073, P.R. China

²College of Mathematics and Computer Science, Changsha University of Science Technology, Changsha, 410076, P.R. China

Abstract. In this paper, the authors investigate the existence of solutions of impulsive boundary value problems for second-order ordinary differential inclusions which admitting non-convex valued on right-hand function. Some new results under weaker conditions are exhibited. The methods rely on a fixed point theorem for contraction multivalued maps due to Covitz and Nadler and Schaefer's fixed point theorem combined with lower semicontinuous multivalued operators with decomposable values.

Keywords. Impulsive differential inclusions, measurable selection, contraction multivalued map, boundary value problems.

AMS (MOS) subject classification: 34K45, 49K24

1 Introduction

In this paper, we consider the existence of solutions for the following secondorder ordinary differential inclusions with the form

$$u''(t) - \lambda u(t) \in F(t, u(t)), \ a.e. \ t \in [0, T] \setminus \{t_1, t_2, \dots, t_m\}, \ (1.1)$$

 $\Delta u|_{t=t_k} = I_k(u(t_k^-)), \quad k = 1, 2, \dots, m, \tag{1.2}$

$$\Delta u'|_{t=t_k} = J_k(u(t_k^-)), \quad k = 1, 2, \dots, m, \tag{1.3}$$

$$u(0) - u(T) = \mu_0, \ u'(0) - u'(T) = \mu_1,$$
 (1.4)

where $F: [0,T] \times \mathbb{R}^n \to \mathsf{P}(\mathbb{R}^n)$ is a multi-valued map, $I_k, J_k \in C(\mathbb{R}^n, \mathbb{R}^n)$, $\mu \in \mathbb{R}^n, \lambda > 0, \mathsf{P}(\mathbb{R}^n)$ is the family of all nonempty subsets of $\mathbb{R}^n, 0 = t_0 < t_1 < t_2 < \ldots < t_m < t_{m+1} = T, \Delta u|_{t=t_k} = u(t_k^+) - u(t_k^-), u(t_k^+) \text{ and } u(t_k^-)$ represent the right and left limits of u(t) at $t = t_k$, respectively. $\Delta u'|_{t=t_k}$ is defined similarly.

Note that when $\mu_0 = \mu_1 = 0$ we have periodic boundary conditions. When the right hand side is single-valued function, the impulsive ordinary differential equations or inclusions were considered by Nieto[17, 18], Benchohra et al. [3, 4, 5, 6, 7] Bajo and Liz[2] and Pierson Gorez C.[19]. In this