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Abstract. In this paper, the authors investigate the existence of solutions of impulsive

boundary value problems for second-order ordinary differential inclusions which admitting

non-convex valued on right-hand function. Some new results under weaker conditions are

exhibited. The methods rely on a fixed point theorem for contraction multivalued maps

due to Covitz and Nadler and Schaefer’s fixed point theorem combined with lower semi-

continuous multivalued operators with decomposable values.
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1 Introduction

In this paper, we consider the existence of solutions for the following second-
order ordinary differential inclusions with the form

u′′(t)− λu(t) ∈ F (t, u(t)), a.e. t ∈ [0, T ] \ {t1, t2, . . . , tm}, (1.1)
∆u|t=tk

= Ik(u(t−k )), k = 1, 2, . . . , m, (1.2)
∆u′|t=tk

= Jk(u(t−k )), k = 1, 2, . . . , m, (1.3)
u(0)− u(T ) = µ0, u′(0)− u′(T ) = µ1, (1.4)

where F : [0, T ] × Rn → P(Rn) is a multi-valued map, Ik, Jk ∈ C(Rn, Rn),
µ ∈ Rn, λ > 0, P(Rn) is the family of all nonempty subsets of Rn, 0 = t0 <
t1 < t2 < . . . < tm < tm+1 = T , ∆u|t=tk

= u(t+k ) − u(t−k ), u(t+k ) and u(t−k )
represent the right and left limits of u(t) at t = tk, respectively. ∆u′|t=tk

is
defined similarly.

Note that when µ0 = µ1 = 0 we have periodic boundary conditions.
When the right hand side is single-valued function, the impulsive ordinary
differential equations or inclusions were considered by Nieto[17, 18], Ben-
chohra et al. [3, 4, 5, 6, 7] Bajo and Liz[2] and Pierson Gorez C.[19]. In this


