http://www.watam.org

SUCCESSIVE APPROXIMATIONS TO SOLUTIONS OF SET DIFFERENTIAL EQUATIONS IN BANACH SPACES

Vasile Lupulescu

"Constantin Brancusi" University, Targu Jiu, Romania

Abstract. By using the method of successive approximations, we prove the existence and uniqueness of a solution for set differential equations with right-hand satisfying a Carathéodory condition in Banach spaces.

Keywords. Set differential equations, existence and uniqueness theorem.

AMS (MOS) subject classification: 34A60, 34A12

1 Introduction

In the last years, the study of set differential equations in a suitable space was initiated as an independent subject and several basic results on existence, uniqueness, comparison result, global existence and continuous dependence are discussed in many papers ([1], [3], [6], [7], [10]). For results, references and applications in this framework we refer to the book by V. Lakshmikantham, T. Gnana Bhaskar and J. Vasundhara Devi([4]). Also, note that all the concepts not discussed in detail in the sequel can be found in [4]. The aim of this paper is to establish the existence and uniqueness of a solution for set differential equations with right-hand satisfying a Carathéodory condition in Banach spaces using the method of successive approximations that in [11], accordingly adapted.

Let *E* be a real separable Banach space with norm $\|\cdot\|$. For $x \in E$ and for a closed subset $A \subset E$ we denote by d(x, A) the distance from *x* to *A* given by $d(x, A) := \inf\{\|y - x\|; y \in A\}$. For nonempty, bounded closed subsets *A*, *B* of *E* we define the Hausdorff distance between *A* and *B* by

$$D[A,B] = \max\{\sup_{x\in B} d(x,A), \sup_{y\in A} d(y,B)\}.$$

Let $K_c(E)$ denote the collection of all nonempty, compact convex subsets of E. Also, we denote by θ zero element of E which is regarded as a one-point set. It is known that $K_c(E)$, endowed with the Hausdorff distance, is a complete separable metric space. Moreover, if the space $K_c(E)$ is equipped with the natural algebraic operations of addition and nonnegative scalar multiplication, then $K_c(E)$ becomes a semilinear metric space which