http://www.watam.org

GLOBALLY UNIFORMLY ASYMPTOTICAL STABILIZATION OF TIME-DELAY NONLINEAR SYSTEMS

Xiushan Cai and Ganyun Lv and Xiuling Xu

College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Zhejiang Jinhua 321004, P. R. China

Abstract. Based on backstepping approach, the problem of globally uniformly asymptotically stabilizing time-delay nonlinear systems is proposed. The design strategy depends on the construction of a Lyapunov-krasovskii functional. A continuously differentiable control law is given. The simulation shows the effectiveness of the method.

 ${\bf Keywords.}\ {\rm time-delay,\ control,\ Lyapunov\ function,\ nonlinear\ systems,\ stabilization.}$

AMS (MOS) subject classification: nonlinear systems, stabilization

1 Introduction

One of the most popular nonlinear techniques of control design is the backstepping approach. The purpose of backstepping is the construction of various types of control Lyapunov functions : robust, Input-to-state stability (ISS), etc. Backstepping constructions of robust control Lyapunov function were presented by Freeman et al.[1], Marino et al.[2], and Cai et al.[3-4]. Backstepping also serves for ISS-control Lyapunov function construction in Krstic et al. [5]. The multiple advantages offered by this approach are wellknown. Zhang et al.[6] used the backstepping approach to design a control law for linear time-varying systems with known and unknown parameters. For systems with stochastic disturbance backstepping designs were developed by Krstic et al.[7]. Backstepping was employed to solve an almost disturbance decoupling problem by Isidori [8], and Ding [9]. Freeman et al.[10] extended backstepping to control inputs with magnitude and rate limits. It is observed in particular that this technique yields a wide family of globally asymptotically stabilizing control laws, allows to address robustness issues and to solve adaptive problems. Mazenc et al. [11] based on backstepping approach, solved the problem of designing feedbacks bounded in norm. Mazenc et al.[12] worked out the problem of stabilizing chains of integrators with bounded controls when there is a delay arbitrarily large in the input. The interconnection of nonlinear systems with delay was studied in Michiels et al. [13]. Basin et al. [14] solved the optimal filtering problem for a linear system over observations with multiple delays. The optimal controller for