Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 15 (2008) 555-571 Copyright ©2008 Watam Press

http://www.watam.org

STRONG CONVERGENCE OF THE MODIFIED THREE STEP ITERATIVE PROCESS IN BANACH SPACES*

Gang Hu¹ and Liping Yang²

¹Faculty of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510090 PR China E-mail: hugang1501@163.com

²Faculty of Applied Mathematics, Guangdong University of Technology, Guangzhou 510090 PR China E-mail: yanglping2003@126.com

Abstract. We study modified three step iterative process for three nonself total asymptotically nonexpansive mappings on a nonempty closed convex subset of a uniformly convex Banach spaces. We derive a necessary and sufficient condition for the strong convergence of this iteration process to a common fixed point of these mappings. The results of this paper improve and extend the corresponding results of [5], [9], [11]—[14], [16], [22] and [26] in the literature.

Keywords. Nonself total asymptotically nonexpansive mappings, modified three step iterative sequence, demicompact, common fixed point, uniformly convex Banach spaces.

AMS (MOS) subject classification: 47H09, 47H10, 47H14

1 Introduction and Preliminaries

We assume that E is a real normed space and K is a nonempty subset of E. A mapping $T: K \to K$ is called nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in K$. A mapping $T: K \to K$ is called asymptotically nonexpansive [1] if there exists a sequence $\{k_n\} \subset [1, \infty)$, $\lim_{n\to\infty} k_n = 1$ such that

$$||T^{n}x - T^{n}y|| \le k_{n}||x - y|| \tag{1.1}$$

for all $x, y \in K$ and $n \ge 1$. Goebel and Kirk [1] proved that if K is a nonempty closed and bounded subset of a uniformly convex Banach space, then every asymptotically nonexpansive self-mapping has a fixed point.

A weaker definition, mapping $T: K \to K$ is called *asymptotically nonexpansive in the intermediate sense* (see, e.g., [2]) provided that T is continuous and the following inequality holds:

$$\limsup_{n \to \infty} \sup_{x, y \in K} \left(\|T^n x - T^n y\| - \|x - y\| \right) \le 0.$$
(1.2)

⁰*Supported by the National Natural Science Foundation of China(No. 60674098).

⁰E-mail address: hugang1501@163.com (G. Hu), yanglping2003@126.com (L. Yang)