Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 15 (2008) 573-585 Copyright ©2008 Watam Press

http://www.watam.org

AN APPLICATION OF LIMIT RELATIVE CATEGORY TO THE NONLINEAR HAMILTONIAN SYSTEM WITH POLYNOMIAL INCREASE

TACKSUN JUNG $^{\rm 1}$ and Q-HEUNG CHOI $^{\rm 2}$

 1 Department of Mathematics Kunsan National University, Kunsan 573-701, Korea

² Department of Mathematics Education Inha University, Incheon 402-751, Korea

Abstract. We investigate the multiplicity of 2π -periodic solutions of the nonlinear Hamiltonian system with polynomial increase, $\dot{z} = J(H_z(z))$, where $z : R \to R^{2n}$, $\dot{z} = \frac{dz}{dt}$, $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, I is the identity matrix on R^n , $H : R^{2n} \to R$, and H_z is the gradient of H. We look for the weak solutions $z = (p, q) \in E$ of the nonlinear Hamiltonian system. Keywords. Hamiltonian system, Palais-Smale condition, limit relative category, variation linking inequality.

AMS subject classification: 34C25, 34C40, 35B10, 35Q80

1 Introduction

Let H(z(t)) be a C^1 function defined on R^{2n} which is 2π -periodic with respect to the variable t. Let z = (p,q), $p = (z_1, \dots, z_n)$, $q = (z_{n+1}, \dots, z_{2n})$. In this paper we investigate the multiplicity of 2π -periodic solutions of the following Hamiltonian system with polynomial increase

$$\dot{p} = -H_q(p,q),$$

$$\dot{q} = H_p(p,q),$$

where $H_p(p,q)$ satisfies the below conditions (H1), (H2). The system can be written in a compact version

$$\dot{z} = J(H_z(z)),\tag{1.1}$$

where $z: R \to R^{2n}$, $\dot{z} = \frac{dz}{dt}$, $J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$, I is the identity matrix on R^n , $H: R^{2n} \to R$, and H_z is the gradient of H. Let $E = W^{\frac{1}{2},2}([0,2\pi], R^{2n})$. We look for the weak solutions $z = (p,q) \in E$ of (1.1); that is, z = (p,q) satisfies

$$\int_0^{2\pi} [(\dot{p} + H_q(z)) \cdot \psi - (\dot{q} - H_p(z)) \cdot \phi] dt$$