Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 15 (2008) 621-631 Copyright ©2008 Watam Press

http://www.watam.org

ON PERIODIC SOLUTIONS OF LINEAR IMPULSIVE DELAY DIFFERENTIAL SYSTEMS¹

M. U. Akhmet^a, J. O. Alzabut^b and A. Zafer^a

^aDepartment of Mathematics, Middle East Technical University 06531 Ankara, Turkey E-mail:marat@math.metu.edu.tr; zafer@metu.edu.tr

^bDepartment of Mathematics and Computer Science, Çankaya University, 06530 Ankara, Turkey E-mail: jehad@cankaya.edu.tr

Abstract. A necessary and sufficient condition is established for the existence of periodic solutions of linear impulsive delay differential systems.

Keywords. Linear, Impulse, Delay, Adjoint, Periodic solution.

AMS (MOS) subject classification: 34A37.

1 Introduction

It is well known that (see eg., [20]) the nonhomogeneous linear system

$$x'(t) = A(t)x(t) + f(t)$$
(1)

has periodic solutions if and only if

$$\int_0^\omega y^T(t)f(t)\,\mathrm{d}t = 0\tag{2}$$

for all periodic solutions y(t) of period ω of the adjoint system

$$y'(t) = -A^T(t)y(t),$$
 (3)

where $A \in C(\mathbb{R}, \mathbb{R}^{n \times n})$ and $f \in C(\mathbb{R}, \mathbb{R}^n)$ are periodic functions of period ω . This result was extended in [8] to delay differential systems of the form

$$x'(t) = A(t)x(t) + B(t)x(t-\tau) + f(t),$$
(4)

where $A, B \in C(\mathbb{R}, \mathbb{R}^{n \times n})$ and $f \in C(\mathbb{R}, \mathbb{R}^n)$ are periodic functions of period ω and $\tau > 0$ is a fixed real number. Indeed, Halanay proved that (4) has

 $^{^1\}mathrm{This}$ work is a part of Ph.D. dissertation of J. O. Alzabut completed in Middle East Technical University, 2004.