Dynamics of Continuous, Discrete and Impulsive Systems Series B: Applications & Algorithms 15 (2008) 891-902 Copyright ©2008 Watam Press

http://www.watam.org

PERIODIC SOLUTIONS FOR A RESONANT SYSTEM OF COUPLED TELEGRAPH-WAVE EQUATIONS

Ravi P. Agarwal¹, Jinhai Chen² and Donal O'Regan³

¹Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6975, USA. E-mail: agarwal@fit.edu

²Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. E-mail: cjh-maths@yahoo.com.cn

³Department of Mathematics, National University of Ireland, Galway, Ireland. E-mail: donal.oregan@nuigalway.ie

Abstract. In this paper the unique solvability of the periodic-Dirichlet problem for nonlinear telegraph-wave equations with resonance is studied. Our methods involve the use of the global inverse function theorem and a Galerkin method.

Key words. telegraph-wave equation, periodic-Dirichlet problem, generalized solution, existence uniqueness.

AMS subject classifications(2000). 35D05, 35L05.

1 Introduction

Let $\Omega := [0, 2\pi] \times [0, \pi] \subset \mathbb{R}^2$, $H := [\mathbb{L}^2(\Omega)]^n$, for integers $n \ge 1$, with H a real Hilbert space with the inner product

$$\langle u, v \rangle_H := \int_0^{2\pi} \int_0^{\pi} \langle u(t, x), v(t, x) \rangle dx dt.$$
(1)

Here, $\langle \cdot, \cdot \rangle$ denotes the Euclidean inner product in \mathbb{R}^n . The norms induced by $\langle \cdot, \cdot \rangle_H$ and $\langle \cdot, \cdot \rangle$ are denoted by $\|\cdot\|_H$ and $|\cdot|$, respectively.

We consider the following system of coupled telegraph-wave equations

$$u_{tt} - u_{xx} + Cu_t - f(t, x, u) = h(t, x), \qquad \forall (t, x) \in \Omega,$$
(2)

with the boundary conditions,

u

$$u(t,0) = u(t,\pi) = 0, \quad \forall t \in [0,2\pi];$$
 (3)

$$(0,x) = u(2\pi,x), \quad u_t(0,x) = u_t(2\pi,x), \quad \forall x \in [0,\pi].$$
 (4)

Here, the mapping $f: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ satisfies the Caratheodory conditions, $h: \Omega \to \mathbb{R}^n$, and C is a $n \times n$ symmetric matrix.

By a generalized solution to the periodic-Dirichlet problem for (2), (3), (4) (**GPDS** for (2), (3), (4), for short) we mean a function $u \in H$ such that

$$\langle u, v_{tt} - v_{xx} \rangle_H + \langle u, Cv_t \rangle_H - \langle f(t, x, u), v \rangle_H = \langle h(t, x), v \rangle_H, \tag{5}$$