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Abstract. In this paper, we investigate the issue on the stabilizing and synchronization
of the new chaotic system proposed by [11] via an impulsive method. Some new and less
conservative criteria for the global exponential stability and asymptotical stability of im-
pulsively controlled new chaotic system are obtained with varying impulsive intervals. In
particular, some simple and easily verified criteria are established with equivalent impul-
sive intervals. An illustrative example is finally included to visualize the effectiveness and
feasibility of the developed methods.
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1 Introduction

In 1963, Lorenz found the first chaotic attractor in a three-dimensional au-
tonomous system when he studied the atmospheric convection [1]. As the first
chaotic model, the Lorenz system has become a paradigm for chaos research.
Since the discovery of the Lorenz system, more chaotic (hyperchaotic) sys-
tems have been constructed such as Rössler system, hyperchaotic Rössler
system, Chua’s circuit, Hénon attractor, Logistic map, Chen system, gener-
alized Lorenz system, hyperchaotic MCK circuit, hyperchaotic Chen system,
etc. [2-10]. Nowadays, it is perhaps not difficult to construct a new chaotic
(hyperchaotic) system. Recently, Qi and Chen et al.[11] add a cross-product
nonlinear term to the first equation of the Lorenz system, obtaining a new
system as follows: 




ẋ1 = a(x2 − x1) + x2x3,
ẋ2 = cx1 − x2 − x1x3,
ẋ3 = x1x2 − bx3,

(1)

where dot denotes differentiation with respect to time t. System (1) has the
following basic properties:

(1) Symmetry about the z-axis, which is invariant for the coordinate
transformation (x1, y1, z1) → (−x1,−y1, z1).

(2) Dissipation: as long as a + b + 1 > 0 system (1) is dissipative.
(3) Stability: System (1) is globally, unanimously and asymptotically

stable about the origin under the condition c < a
a+1 .


